These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37387083)

  • 1. Combining NLP and Machine Learning for Differential Diagnosis of COPD Exacerbation Using Emergency Room Data.
    Shah-Mohammadi F; Finkelstein J
    Stud Health Technol Inform; 2023 Jun; 305():525-528. PubMed ID: 37387083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NLP-Assisted Differential Diagnosis of Chronic Obstructive Pulmonary Disease Exacerbation.
    Shah-Mohammadi F; Finkelstein J
    Stud Health Technol Inform; 2024 Jan; 310():589-593. PubMed ID: 38269877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-enabled risk prediction of chronic obstructive pulmonary disease with unbalanced data.
    Wang X; Ren H; Ren J; Song W; Qiao Y; Ren Z; Zhao Y; Linghu L; Cui Y; Zhao Z; Chen L; Qiu L
    Comput Methods Programs Biomed; 2023 Mar; 230():107340. PubMed ID: 36640604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED.
    Goto T; Camargo CA; Faridi MK; Yun BJ; Hasegawa K
    Am J Emerg Med; 2018 Sep; 36(9):1650-1654. PubMed ID: 29970272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Machine Learning to Predict Likelihood and Cause of Readmission After Hospitalization for Chronic Obstructive Pulmonary Disease Exacerbation.
    Bonomo M; Hermsen MG; Kaskovich S; Hemmrich MJ; Rojas JC; Carey KA; Venable LR; Churpek MM; Press VG
    Int J Chron Obstruct Pulmon Dis; 2022; 17():2701-2709. PubMed ID: 36299799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing a Machine Learning Model to Predict Severe Chronic Obstructive Pulmonary Disease Exacerbations: Retrospective Cohort Study.
    Zeng S; Arjomandi M; Tong Y; Liao ZC; Luo G
    J Med Internet Res; 2022 Jan; 24(1):e28953. PubMed ID: 34989686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.
    Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E
    Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of lumbar disc herniation and lumbar spinal stenosis using natural language processing-based machine learning based on positive symptoms.
    Ren G; Yu K; Xie Z; Liu L; Wang P; Zhang W; Wang Y; Wu X
    Neurosurg Focus; 2022 Apr; 52(4):E7. PubMed ID: 35364584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic obstructive pulmonary disease assessment test: usefulness for monitoring recovery and predicting poor course of disease after exacerbations.
    Pulido Herrero E; García Gutiérrez S; Antón Ladislao A; Piñera Salmerón P; Martín Corral MJ; Gorordo Unzueta MI; Lopetegui Eraso P; García Lamberechts EJ; Quintana López JM
    Emergencias; 2019 Feb; 31(1):21-26. PubMed ID: 30656869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cardiovascular phenotype of Chronic Obstructive Pulmonary Disease (COPD): Applying machine learning to the prediction of cardiovascular comorbidities.
    Nikolaou V; Massaro S; Garn W; Fakhimi M; Stergioulas L; Price D
    Respir Med; 2021 Sep; 186():106528. PubMed ID: 34260974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery.
    Karhade AV; Bongers MER; Groot OQ; Cha TD; Doorly TP; Fogel HA; Hershman SH; Tobert DG; Srivastava SD; Bono CM; Kang JD; Harris MB; Schwab JH
    Spine J; 2021 Oct; 21(10):1635-1642. PubMed ID: 32294557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing stroke severity using electronic health record data: a machine learning approach.
    Kogan E; Twyman K; Heap J; Milentijevic D; Lin JH; Alberts M
    BMC Med Inform Decis Mak; 2020 Jan; 20(1):8. PubMed ID: 31914991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the COPD Assessment Test respiratory item score on the decision to hospitalize patients with disease exacerbation in a hospital emergency department.
    Pulido Herrero E; Villanueva Etxebarria A; Aramburu Ojembarrena A; Piñera Salmerón P; Quintana López JM; Esteban González C; Gallardo Rebollal MS; Amigo Angulo JM; Urrutikoetxea Etxebarria S; Ibarrola Luengas I; Armentia Bardeci JM; García Gutiérrez S
    Emergencias; 2022 Apr; 34(2):95-102. PubMed ID: 35275459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Preanesthetic History Elements by a Natural Language Processing Engine.
    Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA
    Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning for the development of diagnostic models of decompensated heart failure or exacerbation of chronic obstructive pulmonary disease.
    Gálvez-Barrón C; Pérez-López C; Villar-Álvarez F; Ribas J; Formiga F; Chivite D; Boixeda R; Iborra C; Rodríguez-Molinero A
    Sci Rep; 2023 Aug; 13(1):12709. PubMed ID: 37543661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing.
    Izquierdo JL; Ancochea J; ; Soriano JB
    J Med Internet Res; 2020 Oct; 22(10):e21801. PubMed ID: 33090964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute Exacerbation of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning, and Deep Learning: Development and Cohort Study.
    Wu CT; Li GH; Huang CT; Cheng YC; Chen CH; Chien JY; Kuo PH; Kuo LC; Lai F
    JMIR Mhealth Uhealth; 2021 May; 9(5):e22591. PubMed ID: 33955840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.