These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37387127)

  • 1. Reference panel-guided super-resolution inference of Hi-C data.
    Zhang Y; Blanchette M
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i386-i393. PubMed ID: 37387127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reference panel guided topological structure annotation of Hi-C data.
    Zhang Y; Blanchette M
    Nat Commun; 2022 Dec; 13(1):7426. PubMed ID: 36460680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFHiC: a dilated full convolution model to enhance the resolution of Hi-C data.
    Wang B; Liu K; Li Y; Wang J
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. hicGAN infers super resolution Hi-C data with generative adversarial networks.
    Liu Q; Lv H; Jiang R
    Bioinformatics; 2019 Jul; 35(14):i99-i107. PubMed ID: 31510693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework.
    Hu Y; Ma W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i272-i279. PubMed ID: 34252966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HiCARN: resolution enhancement of Hi-C data using cascading residual networks.
    Hicks P; Oluwadare O
    Bioinformatics; 2022 Apr; 38(9):2414-2421. PubMed ID: 35274679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comprehensive Evaluation of Generalizability of Deep Learning-Based Hi-C Resolution Improvement Methods.
    Murtaza G; Jain A; Hughes M; Wagner J; Singh R
    Genes (Basel); 2023 Dec; 15(1):. PubMed ID: 38254945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model.
    Fang T; Liu Y; Woicik A; Lu M; Jha A; Wang X; Li G; Hristov B; Liu Z; Xu H; Noble WS; Wang S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i471-i480. PubMed ID: 38940142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions.
    Xiong K; Ma J
    Nat Commun; 2019 Nov; 10(1):5069. PubMed ID: 31699985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Micro-C from Hi-C with diffusion models.
    Liu T; Zhu H; Wang Z
    PLoS Comput Biol; 2024 May; 20(5):e1012136. PubMed ID: 38758956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell Hi-C data enhancement with deep residual and generative adversarial networks.
    Wang Y; Guo Z; Cheng J
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for the Differential Analysis of Hi-C Data.
    Nicoletti C
    Methods Mol Biol; 2022; 2301():61-95. PubMed ID: 34415531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for the Analysis of Topologically Associating Domains (TADs).
    Zufferey M; Tavernari D; Ciriello G
    Methods Mol Biol; 2022; 2301():39-59. PubMed ID: 34415530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HiConfidence: a novel approach uncovering the biological signal in Hi-C data affected by technical biases.
    Kobets VA; Ulianov SV; Galitsyna AA; Doronin SA; Mikhaleva EA; Gelfand MS; Shevelyov YY; Razin SV; Khrameeva EE
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36759336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scGrapHiC: deep learning-based graph deconvolution for Hi-C using single cell gene expression.
    Murtaza G; Butaney B; Wagner J; Singh R
    Bioinformatics; 2024 Jun; 40(Supplement_1):i490-i500. PubMed ID: 38940151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep generative modeling and clustering of single cell Hi-C data.
    Liu Q; Zeng W; Zhang W; Wang S; Chen H; Jiang R; Zhou M; Zhang S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C2c: Predicting Micro-C from Hi-C.
    Zhu H; Liu T; Wang Z
    Genes (Basel); 2024 May; 15(6):. PubMed ID: 38927609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.