BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37387132)

  • 1. Seeding with minimized subsequence.
    Li X; Shi Q; Chen K; Shao M
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i232-i241. PubMed ID: 37387132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Seeding for Error-Prone Sequences with SubseqHash2.
    Li X; Chen K; Shao M
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KCMBT: a k-mer Counter based on Multiple Burst Trees.
    Mamun AA; Pal S; Rajasekaran S
    Bioinformatics; 2016 Sep; 32(18):2783-90. PubMed ID: 27283950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A performant bridge between fixed-size and variable-size seeding.
    Kutzner A; Kim PS; Schmidt M
    BMC Bioinformatics; 2020 Jul; 21(1):328. PubMed ID: 32703211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finding optimal threshold for correction error reads in DNA assembling.
    Chin FY; Leung HC; Li WL; Yiu SM
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19208114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PerFSeeB: designing long high-weight single spaced seeds for full sensitivity alignment with a given number of mismatches.
    Titarenko V; Titarenko S
    BMC Bioinformatics; 2023 Oct; 24(1):396. PubMed ID: 37875804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the sensitivity of long read overlap detection using grouped short k-mer matches.
    Du N; Chen J; Sun Y
    BMC Genomics; 2019 Apr; 20(Suppl 2):190. PubMed ID: 30967123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel algorithms for efficient subsequence searching and mapping in nanopore raw signals towards targeted sequencing.
    Han R; Wang S; Gao X
    Bioinformatics; 2020 Mar; 36(5):1333-1343. PubMed ID: 31593235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perfect Hamming code with a hash table for faster genome mapping.
    Takenaka Y; Seno S; Matsuda H
    BMC Genomics; 2011 Nov; 12 Suppl 3(Suppl 3):S8. PubMed ID: 22369457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BWA-MEME: BWA-MEM emulated with a machine learning approach.
    Jung Y; Han D
    Bioinformatics; 2022 Apr; 38(9):2404-2413. PubMed ID: 35253835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Computation of Longest Common Subsequences with Multiple Substring Inclusive Constraints.
    Wang X; Wang L; Zhu D
    J Comput Biol; 2019 Sep; 26(9):938-947. PubMed ID: 30958704
    [No Abstract]   [Full Text] [Related]  

  • 12. Kart: a divide-and-conquer algorithm for NGS read alignment.
    Lin HN; Hsu WL
    Bioinformatics; 2017 Aug; 33(15):2281-2287. PubMed ID: 28379292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibrating Seed-Based Heuristics to Map Short Reads With Sesame.
    Filion GJ; Cortini R; Zorita E
    Front Genet; 2020; 11():572. PubMed ID: 32670351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and efficient short read mapping based on a succinct hash index.
    Zhang H; Chan Y; Fan K; Schmidt B; Liu W
    BMC Bioinformatics; 2018 Mar; 19(1):92. PubMed ID: 29523083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overlap detection on long, error-prone sequencing reads via smooth q-gram.
    Song Y; Tang H; Zhang H; Zhang Q
    Bioinformatics; 2020 Dec; 36(19):4838-4845. PubMed ID: 32311007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and Accurate Algorithms for Mapping and Aligning Long Reads.
    Yang W; Wang L
    J Comput Biol; 2021 Aug; 28(8):789-803. PubMed ID: 34161175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. rHAT: fast alignment of noisy long reads with regional hashing.
    Liu B; Guan D; Teng M; Wang Y
    Bioinformatics; 2016 Jun; 32(11):1625-31. PubMed ID: 26568628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Context-aware seeds for read mapping.
    Xin H; Shao M; Kingsford C
    Algorithms Mol Biol; 2020; 15():10. PubMed ID: 32489399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LAMSA: fast split read alignment with long approximate matches.
    Liu B; Gao Y; Wang Y
    Bioinformatics; 2017 Jan; 33(2):192-201. PubMed ID: 27667793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Querying large read collections in main memory: a versatile data structure.
    Philippe N; Salson M; Lecroq T; LĂ©onard M; Commes T; Rivals E
    BMC Bioinformatics; 2011 Jun; 12():242. PubMed ID: 21682852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.