These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Efficient computation of spaced seed hashing with block indexing. Girotto S; Comin M; Pizzi C BMC Bioinformatics; 2018 Nov; 19(Suppl 15):441. PubMed ID: 30497364 [TBL] [Abstract][Full Text] [Related]
5. FastGT: an alignment-free method for calling common SNVs directly from raw sequencing reads. Pajuste FD; Kaplinski L; Möls M; Puurand T; Lepamets M; Remm M Sci Rep; 2017 May; 7(1):2537. PubMed ID: 28566690 [TBL] [Abstract][Full Text] [Related]
7. MISSH: Fast Hashing of Multiple Spaced Seeds. Mian E; Petrucci E; Pizzi C; Comin M IEEE/ACM Trans Comput Biol Bioinform; 2024 Sep; PP():. PubMed ID: 39320990 [TBL] [Abstract][Full Text] [Related]
8. FSH: fast spaced seed hashing exploiting adjacent hashes. Girotto S; Comin M; Pizzi C Algorithms Mol Biol; 2018; 13():8. PubMed ID: 29588651 [TBL] [Abstract][Full Text] [Related]
9. KAGE: fast alignment-free graph-based genotyping of SNPs and short indels. Grytten I; Dagestad Rand K; Sandve GK Genome Biol; 2022 Oct; 23(1):209. PubMed ID: 36195962 [TBL] [Abstract][Full Text] [Related]
10. Toward fast and accurate SNP genotyping from whole genome sequencing data for bedside diagnostics. Sun C; Medvedev P Bioinformatics; 2019 Feb; 35(3):415-420. PubMed ID: 30032192 [TBL] [Abstract][Full Text] [Related]
17. Fast genotyping of known SNPs through approximate k-mer matching. Shajii A; Yorukoglu D; William Yu Y; Berger B Bioinformatics; 2016 Sep; 32(17):i538-i544. PubMed ID: 27587672 [TBL] [Abstract][Full Text] [Related]
18. Dynamic model based algorithms for screening and genotyping over 100 K SNPs on oligonucleotide microarrays. Di X; Matsuzaki H; Webster TA; Hubbell E; Liu G; Dong S; Bartell D; Huang J; Chiles R; Yang G; Shen MM; Kulp D; Kennedy GC; Mei R; Jones KW; Cawley S Bioinformatics; 2005 May; 21(9):1958-63. PubMed ID: 15657097 [TBL] [Abstract][Full Text] [Related]
19. Theory of local k-mer selection with applications to long-read alignment. Shaw J; Yu YW Bioinformatics; 2022 Oct; 38(20):4659-4669. PubMed ID: 36124869 [TBL] [Abstract][Full Text] [Related]
20. A general near-exact k-mer counting method with low memory consumption enables de novo assembly of 106× human sequence data in 2.7 hours. Shi CH; Yip KY Bioinformatics; 2020 Dec; 36(Suppl_2):i625-i633. PubMed ID: 33381843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]