These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37387140)

  • 1. An intrinsically interpretable neural network architecture for sequence-to-function learning.
    Balcı AT; Ebeid MM; Benos PV; Kostka D; Chikina M
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i413-i422. PubMed ID: 37387140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intrinsically interpretable neural network architecture for sequence to function learning.
    Balcı AT; Ebeid MM; Benos PV; Kostka D; Chikina M
    bioRxiv; 2023 Mar; ():. PubMed ID: 36747873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape.
    Ding P; Wang Y; Zhang X; Gao X; Liu G; Yu B
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COmic: convolutional kernel networks for interpretable end-to-end learning on (multi-)omics data.
    Ditz JC; Reuter B; Pfeifer N
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i76-i85. PubMed ID: 37387152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop.
    Lv H; Dao FY; Zulfiqar H; Su W; Ding H; Liu L; Lin H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions.
    Yan Z; Hamilton WL; Blanchette M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i276-i284. PubMed ID: 32657407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. seqgra: principled selection of neural network architectures for genomics prediction tasks.
    Krismer K; Hammelman J; Gifford DK
    Bioinformatics; 2022 Apr; 38(9):2381-2388. PubMed ID: 35191481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach.
    Agarwal A; Chen L
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ExplaiNN: interpretable and transparent neural networks for genomics.
    Novakovsky G; Fornes O; Saraswat M; Mostafavi S; Wasserman WW
    Genome Biol; 2023 Jun; 24(1):154. PubMed ID: 37370113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data.
    Zhuang Z; Shen X; Pan W
    Bioinformatics; 2019 Sep; 35(17):2899-2906. PubMed ID: 30649185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph convolutional networks for epigenetic state prediction using both sequence and 3D genome data.
    Lanchantin J; Qi Y
    Bioinformatics; 2020 Dec; 36(Suppl_2):i659-i667. PubMed ID: 33381816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable deep neural network for cancer survival analysis by integrating genomic and clinical data.
    Hao J; Kim Y; Mallavarapu T; Oh JH; Kang M
    BMC Med Genomics; 2019 Dec; 12(Suppl 10):189. PubMed ID: 31865908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers.
    Chen S; Gan M; Lv H; Jiang R
    Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):565-577. PubMed ID: 33581335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inferring mammalian tissue-specific regulatory conservation by predicting tissue-specific differences in open chromatin.
    Kaplow IM; Schäffer DE; Wirthlin ME; Lawler AJ; Brown AR; Kleyman M; Pfenning AR
    BMC Genomics; 2022 Apr; 23(1):291. PubMed ID: 35410163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multinomial Convolutions for Joint Modeling of Regulatory Motifs and Sequence Activity Readouts.
    Park M; Singh S; Khan SR; Abrar MA; Grisanti F; Rahman MS; Samee MAH
    Genes (Basel); 2022 Sep; 13(9):. PubMed ID: 36140783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.