BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 37387152)

  • 1. COmic: convolutional kernel networks for interpretable end-to-end learning on (multi-)omics data.
    Ditz JC; Reuter B; Pfeifer N
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i76-i85. PubMed ID: 37387152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inherently interpretable position-aware convolutional motif kernel networks for biological sequencing data.
    Ditz JC; Reuter B; Pfeifer N
    Sci Rep; 2023 Oct; 13(1):17216. PubMed ID: 37821530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction.
    Wen G; Li L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37522887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype.
    Jeong D; Koo B; Oh M; Kim TB; Kim S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37740295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretable meta-learning of multi-omics data for survival analysis and pathway enrichment.
    Cho HJ; Shu M; Bekiranov S; Zang C; Zhang A
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36864611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks.
    Choi JM; Chae H
    BMC Bioinformatics; 2023 Apr; 24(1):169. PubMed ID: 37101124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction.
    Hauptmann T; Kramer S
    BMC Bioinformatics; 2023 Feb; 24(1):45. PubMed ID: 36788531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-omics fusion with soft labeling for enhanced prediction of distant metastasis in nasopharyngeal carcinoma patients after radiotherapy.
    Sheng J; Lam S; Zhang J; Zhang Y; Cai J
    Comput Biol Med; 2024 Jan; 168():107684. PubMed ID: 38039891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRGCN: cancer subtyping with multi-reconstruction graph convolutional network using full and partial multi-omics dataset.
    Yang B; Yang Y; Wang M; Su X
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37255323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of multi-omics data using adaptive graph learning and attention mechanism for patient classification and biomarker identification.
    Ouyang D; Liang Y; Li L; Ai N; Lu S; Yu M; Liu X; Xie S
    Comput Biol Med; 2023 Sep; 164():107303. PubMed ID: 37586201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases.
    Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P
    Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scGCN is a graph convolutional networks algorithm for knowledge transfer in single cell omics.
    Song Q; Su J; Zhang W
    Nat Commun; 2021 Jun; 12(1):3826. PubMed ID: 34158507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological sequence modeling with convolutional kernel networks.
    Chen D; Jacob L; Mairal J
    Bioinformatics; 2019 Sep; 35(18):3294-3302. PubMed ID: 30753280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MOViDA: multiomics visible drug activity prediction with a biologically informed neural network model.
    Ferraro L; Scala G; Cerulo L; Carosati E; Ceccarelli M
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37432499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Subspace Mutual Learning for cancer subtypes prediction.
    Yang B; Xin TT; Pang SM; Wang M; Wang YJ
    Bioinformatics; 2021 Nov; 37(21):3715-3722. PubMed ID: 34478501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.
    Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T
    Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-omics data integration by generative adversarial network.
    Ahmed KT; Sun J; Cheng S; Yong J; Zhang W
    Bioinformatics; 2021 Dec; 38(1):179-186. PubMed ID: 34415323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer subtype identification by consensus guided graph autoencoders.
    Liang C; Shang M; Luo J
    Bioinformatics; 2021 Dec; 37(24):4779-4786. PubMed ID: 34289034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
    Liu L; Zhang Z; Li S; Ma K; Zheng Y
    Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.