These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37387162)

  • 1. Deep Local Analysis deconstructs protein-protein interfaces and accurately estimates binding affinity changes upon mutation.
    Mohseni Behbahani Y; Laine E; Carbone A
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i544-i552. PubMed ID: 37387162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Local Analysis evaluates protein docking conformations with locally oriented cubes.
    Mohseni Behbahani Y; Crouzet S; Laine E; Carbone A
    Bioinformatics; 2022 Sep; 38(19):4505-4512. PubMed ID: 35962985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple protein-DNA interfaces unravelled by evolutionary information, physico-chemical and geometrical properties.
    Corsi F; Lavery R; Laine E; Carbone A
    PLoS Comput Biol; 2020 Feb; 16(2):e1007624. PubMed ID: 32012150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SSIPe: accurately estimating protein-protein binding affinity change upon mutations using evolutionary profiles in combination with an optimized physical energy function.
    Huang X; Zheng W; Pearce R; Zhang Y
    Bioinformatics; 2020 Apr; 36(8):2429-2437. PubMed ID: 31830252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. emPDBA: protein-DNA binding affinity prediction by combining features from binding partners and interface learned with ensemble regression model.
    Yang S; Gong W; Zhou T; Sun X; Chen L; Zhou W; Li C
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37193676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning context-aware structural representations to predict antigen and antibody binding interfaces.
    Pittala S; Bailey-Kellogg C
    Bioinformatics; 2020 Jul; 36(13):3996-4003. PubMed ID: 32321157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAAMBE-SEQ: a sequence-based method for predicting mutation effect on protein-protein binding affinity.
    Li G; Pahari S; Murthy AK; Liang S; Fragoza R; Yu H; Alexov E
    Bioinformatics; 2021 May; 37(7):992-999. PubMed ID: 32866236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FilterDCA: Interpretable supervised contact prediction using inter-domain coevolution.
    Muscat M; Croce G; Sarti E; Weigt M
    PLoS Comput Biol; 2020 Oct; 16(10):e1007621. PubMed ID: 33035205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions.
    Laine E; Carbone A
    PLoS Comput Biol; 2015 Dec; 11(12):e1004580. PubMed ID: 26690684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal selection of suitable templates in protein interface prediction.
    Grudman S; Fajardo JE; Fiser A
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37603727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decrypting protein surfaces by combining evolution, geometry, and molecular docking.
    Dequeker C; Laine E; Carbone A
    Proteins; 2019 Nov; 87(11):952-965. PubMed ID: 31199528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SAMF: a self-adaptive protein modeling framework.
    Ding W; Xu Q; Liu S; Wang T; Shao B; Gong H; Liu TY
    Bioinformatics; 2021 Nov; 37(22):4075-4082. PubMed ID: 34042965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HomPPI: a class of sequence homology based protein-protein interface prediction methods.
    Xue LC; Dobbs D; Honavar V
    BMC Bioinformatics; 2011 Jun; 12():244. PubMed ID: 21682895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CAPLA: improved prediction of protein-ligand binding affinity by a deep learning approach based on a cross-attention mechanism.
    Jin Z; Wu T; Chen T; Pan D; Wang X; Xie J; Quan L; Lyu Q
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36688724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.