These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37387166)

  • 1. KR4SL: knowledge graph reasoning for explainable prediction of synthetic lethality.
    Zhang K; Wu M; Liu Y; Feng Y; Zheng J
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i158-i167. PubMed ID: 37387166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers.
    Wang S; Xu F; Li Y; Wang J; Zhang K; Liu Y; Wu M; Zheng J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i418-i425. PubMed ID: 34252965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PiLSL: pairwise interaction learning-based graph neural network for synthetic lethality prediction in human cancers.
    Liu X; Yu J; Tao S; Yang B; Wang S; Wang L; Bai F; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii106-ii112. PubMed ID: 36124788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NSF4SL: negative-sample-free contrastive learning for ranking synthetic lethal partner genes in human cancers.
    Wang S; Feng Y; Liu X; Liu Y; Wu M; Zheng J
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii13-ii19. PubMed ID: 36124790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network.
    Zhu Y; Zhou Y; Liu Y; Wang X; Li J
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36645245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph contextualized attention network for predicting synthetic lethality in human cancers.
    Long Y; Wu M; Liu Y; Zheng J; Kwoh CK; Luo J; Li X
    Bioinformatics; 2021 Aug; 37(16):2432-2440. PubMed ID: 33609108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-dropout graph convolutional network for predicting synthetic lethality in human cancers.
    Cai R; Chen X; Fang Y; Wu M; Hao Y
    Bioinformatics; 2020 Aug; 36(16):4458-4465. PubMed ID: 32221609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational methods, databases and tools for synthetic lethality prediction.
    Wang J; Zhang Q; Han J; Zhao Y; Zhao C; Yan B; Dai C; Wu L; Wen Y; Zhang Y; Leng D; Wang Z; Yang X; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35352098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path-based knowledge reasoning with textual semantic information for medical knowledge graph completion.
    Lan Y; He S; Liu K; Zeng X; Liu S; Zhao J
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):335. PubMed ID: 34844576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming selection bias in synthetic lethality prediction.
    Seale C; Tepeli Y; Gonçalves JP
    Bioinformatics; 2022 Sep; 38(18):4360-4368. PubMed ID: 35876858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using graph-based model to identify cell specific synthetic lethal effects.
    Pu M; Cheng K; Li X; Xin Y; Wei L; Jin S; Zheng W; Peng G; Tang Q; Zhou J; Zhang Y
    Comput Struct Biotechnol J; 2023; 21():5099-5110. PubMed ID: 37920819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SL
    Liu Y; Wu M; Liu C; Li XL; Zheng J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):748-757. PubMed ID: 30969932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-view graph convolutional network for cancer cell-specific synthetic lethality prediction.
    Fan K; Tang S; Gökbağ B; Cheng L; Li L
    Front Genet; 2022; 13():1103092. PubMed ID: 36699450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explaining protein-protein interactions with knowledge graph-based semantic similarity.
    Sousa RT; Silva S; Pesquita C
    Comput Biol Med; 2024 Mar; 170():108076. PubMed ID: 38308873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic lethal connectivity and graph transformer improve synthetic lethality prediction.
    Fan K; Gökbağ B; Tang S; Li S; Huang Y; Wang L; Cheng L; Li L
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39210507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KDGene: knowledge graph completion for disease gene prediction using interactional tensor decomposition.
    Wang X; Yang K; Jia T; Gu F; Wang C; Xu K; Shu Z; Xia J; Zhu Q; Zhou X
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38605639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MPASL: multi-perspective learning knowledge graph attention network for synthetic lethality prediction in human cancer.
    Zhang G; Chen Y; Yan C; Wang J; Liang W; Luo J; Luo H
    Front Pharmacol; 2024; 15():1398231. PubMed ID: 38835667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph based recurrent network for context specific synthetic lethality prediction.
    Jiang Y; Wang J; Zhang Y; Cao Z; Zhang Q; Su J; He S; Bo X
    Sci China Life Sci; 2024 Oct; ():. PubMed ID: 39422810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Synthetic Lethal Interactions in Human Cancers Using Multi-View Graph Auto-Encoder.
    Hao Z; Wu D; Fang Y; Wu M; Cai R; Li X
    IEEE J Biomed Health Inform; 2021 Oct; 25(10):4041-4051. PubMed ID: 33974548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SynLethDB 2.0: a web-based knowledge graph database on synthetic lethality for novel anticancer drug discovery.
    Wang J; Wu M; Huang X; Wang L; Zhang S; Liu H; Zheng J
    Database (Oxford); 2022 May; 2022():. PubMed ID: 35562840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.