BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37387190)

  • 1. Finding phylogeny-aware and biologically meaningful averages of metagenomic samples: L2UniFrac.
    Wei W; Millward A; Koslicki D
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i57-i65. PubMed ID: 37387190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finding phylogeny-aware and biologically meaningful averages of metagenomic samples:
    Wei W; Millward A; Koslicki D
    bioRxiv; 2023 Feb; ():. PubMed ID: 36778267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OGRE: Overlap Graph-based metagenomic Read clustEring.
    Balvert M; Luo X; Hauptfeld E; Schönhuth A; Dutilh BE
    Bioinformatics; 2021 May; 37(7):905-912. PubMed ID: 32871010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mash: fast genome and metagenome distance estimation using MinHash.
    Ondov BD; Treangen TJ; Melsted P; Mallonee AB; Bergman NH; Koren S; Phillippy AM
    Genome Biol; 2016 Jun; 17(1):132. PubMed ID: 27323842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMDUniFrac: exact linear time computation of the UniFrac metric and identification of differentially abundant organisms.
    McClelland J; Koslicki D
    J Math Biol; 2018 Oct; 77(4):935-949. PubMed ID: 29691633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable methods for analyzing and visualizing phylogenetic placement of metagenomic samples.
    Czech L; Stamatakis A
    PLoS One; 2019; 14(5):e0217050. PubMed ID: 31136592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny analysis of whole protein-coding genes in metagenomic data detected an environmental gradient for the microbiota.
    Satoh S; Tanaka R; Yokono M; Endoh D; Yabuki T; Tanaka A
    PLoS One; 2023; 18(2):e0281288. PubMed ID: 36730456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretable metric learning in comparative metagenomics: The adaptive Haar-like distance.
    Gorman ED; Lladser ME
    PLoS Comput Biol; 2024 May; 20(5):e1011543. PubMed ID: 38768195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MarkerMAG: linking metagenome-assembled genomes (MAGs) with 16S rRNA marker genes using paired-end short reads.
    Song W; Zhang S; Thomas T
    Bioinformatics; 2022 Aug; 38(15):3684-3688. PubMed ID: 35713513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GrammR: graphical representation and modeling of count data with application in metagenomics.
    Ayyala DN; Lin S
    Bioinformatics; 2015 May; 31(10):1648-54. PubMed ID: 25609792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical assessment of gene catalogs for metagenomic analysis.
    Commichaux S; Shah N; Ghurye J; Stoppel A; Goodheart JA; Luque GG; Cummings MP; Pop M
    Bioinformatics; 2021 Sep; 37(18):2848-2857. PubMed ID: 33792639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HiCBin: binning metagenomic contigs and recovering metagenome-assembled genomes using Hi-C contact maps.
    Du Y; Sun F
    Genome Biol; 2022 Feb; 23(1):63. PubMed ID: 35227283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of strain-resolved genomes from human microbiome through an integration framework of single-cell genomics and metagenomics.
    Arikawa K; Ide K; Kogawa M; Saeki T; Yoda T; Endoh T; Matsuhashi A; Takeyama H; Hosokawa M
    Microbiome; 2021 Oct; 9(1):202. PubMed ID: 34641955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data.
    Pereira-Flores E; Glöckner FO; Fernandez-Guerra A
    BMC Bioinformatics; 2019 Sep; 20(1):453. PubMed ID: 31488068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HiFine: integrating Hi-C-based and shotgun-based methods to refine binning of metagenomic contigs.
    Du Y; Sun F
    Bioinformatics; 2022 May; 38(11):2973-2979. PubMed ID: 35482530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GraphBin: refined binning of metagenomic contigs using assembly graphs.
    Mallawaarachchi V; Wickramarachchi A; Lin Y
    Bioinformatics; 2020 Jun; 36(11):3307-3313. PubMed ID: 32167528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SimkaMin: fast and resource frugal de novo comparative metagenomics.
    Benoit G; Mariadassou M; Robin S; Schbath S; Peterlongo P; Lemaitre C
    Bioinformatics; 2020 Feb; 36(4):1275-1276. PubMed ID: 31504187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CH-Bin: A convex hull based approach for binning metagenomic contigs.
    Chandrasiri S; Perera T; Dilhara A; Perera I; Mallawaarachchi V
    Comput Biol Chem; 2022 Oct; 100():107734. PubMed ID: 35964419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IDMIL: an alignment-free Interpretable Deep Multiple Instance Learning (MIL) for predicting disease from whole-metagenomic data.
    Rahman MA; Rangwala H
    Bioinformatics; 2020 Jul; 36(Suppl_1):i39-i47. PubMed ID: 32657370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MAGpy: a reproducible pipeline for the downstream analysis of metagenome-assembled genomes (MAGs).
    Stewart RD; Auffret MD; Snelling TJ; Roehe R; Watson M
    Bioinformatics; 2019 Jun; 35(12):2150-2152. PubMed ID: 30418481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.