These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37387191)

  • 1. RNAMotifComp: a comprehensive method to analyze and identify structurally similar RNA motif families.
    Rahaman MM; Khan NS; Zhang S
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i337-i346. PubMed ID: 37387191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNAMotifContrast: a method to discover and visualize RNA structural motif subfamilies.
    Islam S; Rahaman MM; Zhang S
    Nucleic Acids Res; 2021 Jun; 49(11):e61. PubMed ID: 33693841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vernal: a tool for mining fuzzy network motifs in RNA.
    Oliver C; Mallet V; Philippopoulos P; Hamilton WL; WaldispĆ¼hl J
    Bioinformatics; 2022 Jan; 38(4):970-976. PubMed ID: 34791045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.
    Petrov AI; Zirbel CL; Leontis NB
    RNA; 2013 Oct; 19(10):1327-40. PubMed ID: 23970545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNAMotifScanX: a graph alignment approach for RNA structural motif identification.
    Zhong C; Zhang S
    RNA; 2015 Mar; 21(3):333-46. PubMed ID: 25595715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature-based 3D motif filtering for ribosomal RNA.
    Shen Y; Wong HS; Zhang S; Yu Z
    Bioinformatics; 2011 Oct; 27(20):2828-35. PubMed ID: 21873638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo discovery of structural motifs in RNA 3D structures through clustering.
    Ge P; Islam S; Zhong C; Zhang S
    Nucleic Acids Res; 2018 May; 46(9):4783-4793. PubMed ID: 29534235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clustering RNA structural motifs in ribosomal RNAs using secondary structural alignment.
    Zhong C; Zhang S
    Nucleic Acids Res; 2012 Feb; 40(3):1307-17. PubMed ID: 21976732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural-alphabet-based strategy for finding structural motifs across protein families.
    Wu CY; Chen YC; Lim C
    Nucleic Acids Res; 2010 Aug; 38(14):e150. PubMed ID: 20525797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motif scraper: a cross-platform, open-source tool for identifying degenerate nucleotide motif matches in FASTA files.
    Roberson EDO
    Bioinformatics; 2018 Nov; 34(22):3926-3928. PubMed ID: 29850891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure.
    Reinharz V; Major F; WaldispĆ¼hl J
    Bioinformatics; 2012 Jun; 28(12):i207-14. PubMed ID: 22689763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
    Sarver M; Zirbel CL; Stombaugh J; Mokdad A; Leontis NB
    J Math Biol; 2008 Jan; 56(1-2):215-52. PubMed ID: 17694311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic classification of protein structures relying on similarities between alignments.
    Santini G; Soldano H; Pothier J
    BMC Bioinformatics; 2012 Sep; 13():233. PubMed ID: 22974051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying novel sequence variants of RNA 3D motifs.
    Zirbel CL; Roll J; Sweeney BA; Petrov AI; Pirrung M; Leontis NB
    Nucleic Acids Res; 2015 Sep; 43(15):7504-20. PubMed ID: 26130723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the effect of dependence between conditions with Bayesian Linear Mixed Models for motif activity analysis.
    Lederer S; Heskes T; van Heeringen SJ; Albers CA
    PLoS One; 2020; 15(5):e0231824. PubMed ID: 32357166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of RNA nucleotide interactions with backbone k-tree model.
    Ding L; Xue X; LaMarca S; Mohebbi M; Samad A; Malmberg RL; Cai L
    Bioinformatics; 2015 Aug; 31(16):2660-7. PubMed ID: 25886978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MotifPrototyper: a Bayesian profile model for motif families.
    Xing EP; Karp RM
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10523-8. PubMed ID: 15252200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved linking of motifs to their TFs using domain information.
    Baumgarten N; Schmidt F; Schulz MH
    Bioinformatics; 2020 Mar; 36(6):1655-1662. PubMed ID: 31742324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering structural motifs using a structural alphabet: application to magnesium-binding sites.
    Dudev M; Lim C
    BMC Bioinformatics; 2007 Mar; 8():106. PubMed ID: 17389049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A discriminative approach for unsupervised clustering of DNA sequence motifs.
    Stegmaier P; Kel A; Wingender E; Borlak J
    PLoS Comput Biol; 2013; 9(3):e1002958. PubMed ID: 23555204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.