BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37387308)

  • 1. Discovery of a novel transcriptional regulator of sugar catabolism in archaea.
    Johnsen U; Ortjohann M; Reinhardt A; Turner JM; Stratton C; Weber KR; Sanchez KM; Maupin-Furlow J; Davies C; Schönheit P
    Mol Microbiol; 2023 Aug; 120(2):224-240. PubMed ID: 37387308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Key Enzymes of the Semiphosphorylative Entner-Doudoroff Pathway in the Haloarchaeon Haloferax volcanii: Characterization of Glucose Dehydrogenase, Gluconate Dehydratase, and 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase.
    Sutter JM; Tästensen JB; Johnsen U; Soppa J; Schönheit P
    J Bacteriol; 2016 Aug; 198(16):2251-62. PubMed ID: 27297879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GlpR Is a Direct Transcriptional Repressor of Fructose Metabolic Genes in Haloferax volcanii.
    Martin JH; Sherwood Rawls K; Chan JC; Hwang S; Martinez-Pastor M; McMillan LJ; Prunetti L; Schmid AK; Maupin-Furlow JA
    J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29914986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two distinct glyceraldehyde-3-phosphate dehydrogenases in glycolysis and gluconeogenesis in the archaeon Haloferax volcanii.
    Tästensen JB; Schönheit P
    FEBS Lett; 2018 May; 592(9):1524-1534. PubMed ID: 29572819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. D-galactose catabolism in archaea: operation of the DeLey-Doudoroff pathway in Haloferax volcanii.
    Tästensen JB; Johnsen U; Reinhardt A; Ortjohann M; Schönheit P
    FEMS Microbiol Lett; 2020 Jan; 367(1):. PubMed ID: 32055827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fructose degradation in the haloarchaeon Haloferax volcanii involves a bacterial type phosphoenolpyruvate-dependent phosphotransferase system, fructose-1-phosphate kinase, and class II fructose-1,6-bisphosphate aldolase.
    Pickl A; Johnsen U; Schönheit P
    J Bacteriol; 2012 Jun; 194(12):3088-97. PubMed ID: 22493022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis.
    Baumann P; Baumann L
    Arch Microbiol; 1975 Nov; 105(3):225-40. PubMed ID: 127561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose Metabolism and Acetate Switch in Archaea: the Enzymes in Haloferax volcanii.
    Kuprat T; Ortjohann M; Johnsen U; Schönheit P
    J Bacteriol; 2021 Mar; 203(8):. PubMed ID: 33558390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic analysis of the pathways of glucose catabolism and gluconeogenesis in Pseudomonas citronellolis.
    O'Brien RW
    Arch Microbiol; 1975 Mar; 103(1):71-6. PubMed ID: 239656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga.
    Selig M; Xavier KB; Santos H; Schönheit P
    Arch Microbiol; 1997 Apr; 167(4):217-32. PubMed ID: 9075622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata.
    Conrad R; Schlegel HG
    Arch Microbiol; 1977 Feb; 112(1):39-48. PubMed ID: 139134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GlpR represses fructose and glucose metabolic enzymes at the level of transcription in the haloarchaeon Haloferax volcanii.
    Rawls KS; Yacovone SK; Maupin-Furlow JA
    J Bacteriol; 2010 Dec; 192(23):6251-60. PubMed ID: 20935102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber.
    Oren A; Mana L
    FEMS Microbiol Lett; 2003 Jun; 223(1):83-7. PubMed ID: 12799004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum.
    Gaigalat L; Schlüter JP; Hartmann M; Mormann S; Tauch A; Pühler A; Kalinowski J
    BMC Mol Biol; 2007 Nov; 8():104. PubMed ID: 18005413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways of D-fructose and D-glucose catabolism in marine species of Alcaligenes, Pseudomonas marina, and Alteromonas communis.
    Sawyer MH; Baumann P; Baumann L
    Arch Microbiol; 1977 Mar; 112(2):169-72. PubMed ID: 139858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Cyclic Metabolic Network in Pseudomonas protegens Pf-5 Prioritizes the Entner-Doudoroff Pathway and Exhibits Substrate Hierarchy during Carbohydrate Co-Utilization.
    Wilkes RA; Mendonca CM; Aristilde L
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30366991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus.
    Johnsen U; Selig M; Xavier KB; Santos H; Schönheit P
    Arch Microbiol; 2001 Jan; 175(1):52-61. PubMed ID: 11271421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemistry of Coxiella burnetii: Embden-Meyerhof pathway.
    McDonald TL; Mallavia L
    J Bacteriol; 1971 Sep; 107(3):864-9. PubMed ID: 4328756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alternative pathway for the degradation of endogenous fructose during the catabolism of sucrose in Rhodopseudomonas capsulata.
    Conrad R; Schlegel HG
    J Gen Microbiol; 1978 Apr; 105(2):305-13. PubMed ID: 641527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. d-Ribose Catabolism in Archaea: Discovery of a Novel Oxidative Pathway in
    Johnsen U; Sutter JM; Reinhardt A; Pickl A; Wang R; Xiang H; Schönheit P
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31712277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.