BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37387534)

  • 1. Plasmon Resonance Energy Transfer Nanoruler for Pinpointing Molecular Distance and Interaction on the Living Cell Membrane.
    Zhang Y; Fang X; Huang W; Li Q; Jiang H; Wang C; Liu H
    Nano Lett; 2023 Aug; 23(16):7750-7757. PubMed ID: 37387534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Record Resolution of Nanometal Surface Energy Transfer Optical Nanoruler Projects 3D Spatial Configuration of Aptamers on a Living Cell Membrane.
    Zhang Y; Fang X; Huang W; Li Q; Hu F; Liu H
    Nano Lett; 2023 Dec; 23(24):11968-11974. PubMed ID: 38059895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Nucleobase-Resolved Nanoruler Determines the Surface Energy Transfer Radius on the Living Cell Membrane.
    Huang W; Zhang Y; Fang X; Li Q; Liu H
    Anal Chem; 2024 Apr; 96(13):5274-5281. PubMed ID: 38507515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation and Structural Modeling of CD71 as a Molecular Target for Cell-Specific Aptamer Binding.
    Wu X; Liu H; Han D; Peng B; Zhang H; Zhang L; Li J; Liu J; Cui C; Fang S; Li M; Ye M; Tan W
    J Am Chem Soc; 2019 Jul; 141(27):10760-10769. PubMed ID: 31185171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-nucleobase resolution of a surface energy transfer nanoruler for
    Zhang Y; Su M; Fang X; Huang W; Jiang H; Li Q; Hussain N; Ye M; Liu H; Tan W
    Chem Sci; 2023 Sep; 14(35):9560-9573. PubMed ID: 37712043
    [No Abstract]   [Full Text] [Related]  

  • 6. Distance-Dependence Study of Plasmon Resonance Energy Transfer with DNA Spacers.
    Ma J; Gao MX; Zuo H; Li YF; Gao PF; Huang CZ
    Anal Chem; 2020 Oct; 92(20):14278-14283. PubMed ID: 33027589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces.
    Chen Y; O'Donoghue MB; Huang YF; Kang H; Phillips JA; Chen X; Estevez MC; Yang CJ; Tan W
    J Am Chem Soc; 2010 Nov; 132(46):16559-70. PubMed ID: 21038856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-sensitive metal-enhanced fluorescence and plasmon resonance energy transfer.
    Zhang Y; Wang L; Ge L; Wei Y; He S; Liu H
    Anal Methods; 2024 May; ():. PubMed ID: 38742672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle energy transfer on the cell surface.
    Bene L; Szentesi G; Mátyus L; Gáspár R; Damjanovich S
    J Mol Recognit; 2005; 18(3):236-53. PubMed ID: 15593286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into a reversible energy transfer system.
    Gao MX; Zou HY; Gao PF; Liu Y; Li N; Li YF; Huang CZ
    Nanoscale; 2016 Sep; 8(36):16236-16242. PubMed ID: 27714032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells.
    Choi Y; Kang T; Lee LP
    Nano Lett; 2009 Jan; 9(1):85-90. PubMed ID: 19093833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence and Energy Transfer in Dye-Labeled DNA Crystals.
    Melinger JS; Sha R; Mao C; Seeman NC; Ancona MG
    J Phys Chem B; 2016 Dec; 120(48):12287-12292. PubMed ID: 27934217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle.
    Singh MP; Strouse GF
    J Am Chem Soc; 2010 Jul; 132(27):9383-91. PubMed ID: 20560666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ nanospectroscopic pH monitoring by plasmon resonance energy transfer (PRET).
    Shin H; Baek J; Kwon H; Choi Y
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7287-90. PubMed ID: 24245244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.
    Nicoli F; Barth A; Bae W; Neukirchinger F; Crevenna AH; Lamb DC; Liedl T
    ACS Nano; 2017 Nov; 11(11):11264-11272. PubMed ID: 29063765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NSET molecular beacon analysis of hammerhead RNA substrate binding and catalysis.
    Jennings TL; Schlatterer JC; Singh MP; Greenbaum NL; Strouse GF
    Nano Lett; 2006 Jul; 6(7):1318-24. PubMed ID: 16834403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon Resonance Energy Transfer: Coupling between Chromophore Molecules and Metallic Nanoparticles.
    Cao Y; Xie T; Qian RC; Long YT
    Small; 2017 Jan; 13(2):. PubMed ID: 27787947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydopamine-embedded Cu(2-x)Se nanoparticles as a sensitive biosensing platform through the coupling of nanometal surface energy transfer and photo-induced electron transfer.
    Zou HY; Gao PF; Gao MX; Huang CZ
    Analyst; 2015 Jun; 140(12):4121-9. PubMed ID: 25899757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.
    Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV
    Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving lanthanide-based resonance energy transfer detection by increasing donor-acceptor distances.
    Vogel KW; Vedvik KL
    J Biomol Screen; 2006 Jun; 11(4):439-43. PubMed ID: 16751339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.