These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 3738754)

  • 1. Can lactate be used as a fuel by wounded tissue?
    Amaral JF; Shearer JD; Mastrofrancesco B; Gann DS; Caldwell MD
    Surgery; 1986 Aug; 100(2):252-61. PubMed ID: 3738754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrophage interaction with skeletal muscle: a potential role of macrophages in determining the energy state of healing wounds.
    Morris A; Henry W; Shearer J; Caldwell M
    J Trauma; 1985 Aug; 25(8):751-7. PubMed ID: 4020909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose metabolism in injured tissue: a longitudinal study.
    Daley JM; Shearer JD; Mastrofrancesco B; Caldwell MD
    Surgery; 1990 Feb; 107(2):187-92. PubMed ID: 2405537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated lactate suppresses neuronal firing in vivo and inhibits glucose metabolism in hippocampal slice cultures.
    Gilbert E; Tang JM; Ludvig N; Bergold PJ
    Brain Res; 2006 Oct; 1117(1):213-23. PubMed ID: 16996036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue metabolite levels in different types of skeletal muscle during sepsis.
    Angerås U; Hall-Angerås M; Wagner KR; James H; Hasselgren PO; Fischer JE
    Metabolism; 1991 Nov; 40(11):1147-51. PubMed ID: 1943743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose metabolism of injured skeletal muscle: the contribution of inflammatory cells.
    Shearer JD; Amaral JF; Caldwell MD
    Circ Shock; 1988 Jul; 25(3):131-8. PubMed ID: 3168170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The optimal glucose concentration for intermittent cardioplegia in isolated rat heart when added to St. Thomas' Hospital cardioplegic solution.
    Owen P; du Toit EF; Opie LH
    J Thorac Cardiovasc Surg; 1993 Jun; 105(6):995-1006. PubMed ID: 8501949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolytic and oxidative energy metabolism and contraction characteristics of intact human muscle.
    Hultman E; Sjöholm H; Sahlin K; Edström L
    Ciba Found Symp; 1981; 82():19-40. PubMed ID: 6271506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A macrophage-mediated factor that increases the high energy phosphate content of skeletal muscle.
    Morris AS; Shearer J; Henry W; Mastrofrancesco B; Caldwell MD
    J Surg Res; 1985 Apr; 38(4):373-82. PubMed ID: 3999732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of fluorocitrate on cerebral oxidation of lactate and glucose in freely moving rats.
    Zielke HR; Zielke CL; Baab PJ; Tildon JT
    J Neurochem; 2007 Apr; 101(1):9-16. PubMed ID: 17241122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis.
    James JH; Fang CH; Schrantz SJ; Hasselgren PO; Paul RJ; Fischer JE
    J Clin Invest; 1996 Nov; 98(10):2388-97. PubMed ID: 8941658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic recovery of mouse extensor digitorum longus and soleus muscle.
    Leijendekker WJ; Elzinga G
    Pflugers Arch; 1990 Apr; 416(1-2):22-7. PubMed ID: 2352837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of insulin and leucine on protein turnover in rat soleus muscle after burn injury.
    Odessey R; Parr B
    Metabolism; 1982 Jan; 31(1):82-7. PubMed ID: 7043163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy metabolism in relation to oxygen supply in contracting rat skeletal muscle.
    Idström JP; Subramanian VH; Chance B; Scherstén T; Bylund-Fellenius AC
    Fed Proc; 1986 Dec; 45(13):2937-41. PubMed ID: 3780997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular-intracellular lactate gradients in skeletal muscle during hemorrhagic shock in the rat.
    Pearce FJ; Connett RJ; Drucker WR
    Surgery; 1985 Oct; 98(4):625-31. PubMed ID: 4049240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for aerobic glycolysis in lambda-carrageenan-wounded skeletal muscle.
    Caldwell MD; Shearer J; Morris A; Mastrofrancesco B; Henry W; Albina JE
    J Surg Res; 1984 Jul; 37(1):63-8. PubMed ID: 6738047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local effect of thermal injury on skeletal muscle blood flow and nucleotide levels.
    Turinsky J; Chaudry IH; Loegering DJ; Nelson KM
    Circ Shock; 1981; 8(1):31-40. PubMed ID: 7237682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate is a preferential oxidative energy substrate over glucose for neurons in culture.
    Bouzier-Sore AK; Voisin P; Canioni P; Magistretti PJ; Pellerin L
    J Cereb Blood Flow Metab; 2003 Nov; 23(11):1298-306. PubMed ID: 14600437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.