These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 37387600)
1. Role of death-associated protein kinase 1 (DAPK1) in retinal degenerative diseases: an Firoz A; Talwar P J Biomol Struct Dyn; 2024 Jul; 42(11):5686-5698. PubMed ID: 37387600 [TBL] [Abstract][Full Text] [Related]
2. Structure-Based Virtual Screening and Discovery of New Bi-functional DAPK1 Inhibitors. Talwar P; Singh P; Ravanan P Mol Biotechnol; 2024 Apr; 66(4):876-901. PubMed ID: 37351834 [TBL] [Abstract][Full Text] [Related]
3. Identification of potential death-associated protein kinase-1 (DAPK1) inhibitors by an integrated ligand-based and structure-based computational drug design approach. Ghosh P; Singh R; Ganeshpurkar A; Swetha R; Kumar D; Singh SK; Kumar A J Biomol Struct Dyn; 2023 Dec; 41(20):10785-10797. PubMed ID: 36576199 [TBL] [Abstract][Full Text] [Related]
4. Sun Y; Zhao J; Lu Y; Ngo FY; Shuai B; Zhang ZJ; Feng Y; Rong J Curr Neuropharmacol; 2024; 22(14):2353-2367. PubMed ID: 38752632 [TBL] [Abstract][Full Text] [Related]
5. Prediction of GluN2B-CT Tu G; Fu T; Yang F; Yao L; Xue W; Zhu F Molecules; 2018 Nov; 23(11):. PubMed ID: 30463177 [TBL] [Abstract][Full Text] [Related]
6. Structure-based identification of potential inhibitors of ribosomal protein S6 kinase 1, targeting cancer therapy: a combined docking and molecular dynamics simulations approach. Alam A; Khan MS; Mathur Y; Sulaimani MN; Farooqui N; Ahmad SF; Nadeem A; Yadav DK; Mohammad T J Biomol Struct Dyn; 2024 Jul; 42(11):5758-5769. PubMed ID: 37365756 [TBL] [Abstract][Full Text] [Related]
7. Death-Associated Protein Kinase 1 Phosphorylation in Neuronal Cell Death and Neurodegenerative Disease. Kim N; Chen D; Zhou XZ; Lee TH Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31248062 [TBL] [Abstract][Full Text] [Related]
8. Structural and thermodynamic analyses of interactions between death-associated protein kinase 1 and anthraquinones. Yokoyama T; Wijaya P; Kosaka Y; Mizuguchi M Acta Crystallogr D Struct Biol; 2020 May; 76(Pt 5):438-446. PubMed ID: 32355040 [TBL] [Abstract][Full Text] [Related]
9. Exploring putative inhibitors of Death Associated Protein Kinase 1 (DAPK1) via targeting Gly-Glu-Leu (GEL) and Pro-Glu-Asn (PEN) substrate recognition motifs. Singh P; Talwar P J Mol Graph Model; 2017 Oct; 77():153-167. PubMed ID: 28858643 [TBL] [Abstract][Full Text] [Related]
10. Computational Dissection of the Role of Trp305 in the Regulation of the Death-Associated Protein Kinase-Calmodulin Interaction. Zhu YP; Gao XY; Xu GH; Qin ZF; Ju HX; Li DC; Ma DN Biomolecules; 2022 Sep; 12(10):. PubMed ID: 36291604 [TBL] [Abstract][Full Text] [Related]
11. Structural Insight into the Interactions between Death-Associated Protein Kinase 1 and Natural Flavonoids. Yokoyama T; Kosaka Y; Mizuguchi M J Med Chem; 2015 Sep; 58(18):7400-8. PubMed ID: 26322379 [TBL] [Abstract][Full Text] [Related]
12. Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Wu YH; Chou TF; Young L; Hsieh FY; Pan HY; Mo ST; Brown SB; Chen RH; Kimchi A; Lai MZ Cell Death Dis; 2020 May; 11(5):305. PubMed ID: 32366830 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the molecular interactions between resveratrol derivatives and death-associated protein kinase 1. Yokoyama T; Kusaka K FEBS J; 2023 Sep; 290(18):4465-4479. PubMed ID: 37171222 [TBL] [Abstract][Full Text] [Related]
14. Determination of potential selective inhibitors for ROCKI and ROCKII isoforms with molecular modeling techniques: structure based docking, ADMET and molecular dynamics simulation. Bayel Secinti B; Tatar G; Taskin Tok T J Biomol Struct Dyn; 2019 Jun; 37(9):2457-2463. PubMed ID: 30047850 [TBL] [Abstract][Full Text] [Related]
15. First-in-class DAPK1/CSF1R dual inhibitors: Discovery of 3,5-dimethoxy-N-(4-(4-methoxyphenoxy)-2-((6-morpholinopyridin-3-yl)amino)pyrimidin-5-yl)benzamide as a potential anti-tauopathies agent. Farag AK; Hassan AHE; Jeong H; Kwon Y; Choi JG; Oh MS; Park KD; Kim YK; Roh EJ Eur J Med Chem; 2019 Jan; 162():161-175. PubMed ID: 30445265 [TBL] [Abstract][Full Text] [Related]
16. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Farag AK; Roh EJ Med Res Rev; 2019 Jan; 39(1):349-385. PubMed ID: 29949198 [TBL] [Abstract][Full Text] [Related]
17. Pharmacophore modeling, multiple docking, and molecular dynamics studies on Wee1 kinase inhibitors. Hu Y; Zhou L; Zhu X; Dai D; Bao Y; Qiu Y J Biomol Struct Dyn; 2019 Jul; 37(10):2703-2715. PubMed ID: 30052133 [TBL] [Abstract][Full Text] [Related]
18. DAPK1 Signaling Pathways in Stroke: from Mechanisms to Therapies. Wang S; Shi X; Li H; Pang P; Pei L; Shen H; Lu Y Mol Neurobiol; 2017 Aug; 54(6):4716-4722. PubMed ID: 27447806 [TBL] [Abstract][Full Text] [Related]
19. Ablation of Death-Associated Protein Kinase 1 Changes the Transcriptomic Profile and Alters Neural-Related Pathways in the Brain. Li R; Zhi S; Lan G; Chen X; Zheng X; Hu L; Wang L; Zhang T; Lee TH; Rao S; Chen D Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047515 [TBL] [Abstract][Full Text] [Related]
20. Ser289 phosphorylation activates both DAPK1 and DAPK2 but in response to different intracellular signaling pathways. Shiloh R; Bialik S; Kimchi A Cell Cycle; 2019 Jun; 18(11):1169-1176. PubMed ID: 31116076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]