These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37387744)

  • 1. Retracted: Research on Polycaprolactone-Gelatin Composite Scaffolds Carrying Nerve Growth Factor for the Repair of Spinal Cord Injury.
    Markers D
    Dis Markers; 2023; 2023():9818597. PubMed ID: 37387744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on Polycaprolactone-Gelatin Composite Scaffolds Carrying Nerve Growth Factor for the Repair of Spinal Cord Injury.
    Yang S; Zhang N; Dong Y; Zhang X
    Dis Markers; 2022; 2022():3880687. PubMed ID: 36212178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of nerve cell regeneration on nanofibers containing cerium oxide nanoparticles in a spinal cord injury model in rats.
    Rahimi B; Behroozi Z; Motamednezhad A; Jafarpour M; Hamblin MR; Moshiri A; Janzadeh A; Ramezani F
    J Mater Sci Mater Med; 2023 Feb; 34(2):9. PubMed ID: 36809518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury.
    Song S; Li Y; Huang J; Cheng S; Zhang Z
    Biomater Adv; 2023 May; 148():213385. PubMed ID: 36934714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury.
    Zhou X; Shi G; Fan B; Cheng X; Zhang X; Wang X; Liu S; Hao Y; Wei Z; Wang L; Feng S
    Int J Nanomedicine; 2018; 13():6265-6277. PubMed ID: 30349249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Macroporous Polycaprolactone/Silk Fibroin/Gelatin/Ascorbic Acid Composite Scaffolds and
    Abpeikar Z; Moradi L; Javdani M; Kargozar S; Soleimannejad M; Hasanzadeh E; Mirzaei SA; Asadpour S
    Cartilage; 2021 Dec; 13(2_suppl):1583S-1601S. PubMed ID: 34340598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair.
    Saglam A; Perets A; Canver AC; Li HL; Kollins K; Cohen G; Fischer I; Lazarovici P; Lelkes PI
    J Mol Neurosci; 2013 Feb; 49(2):334-46. PubMed ID: 22878912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury.
    Babaloo H; Ebrahimi-Barough S; Derakhshan MA; Yazdankhah M; Lotfibakhshaiesh N; Soleimani M; Joghataei MT; Ai J
    J Cell Physiol; 2019 Jul; 234(7):11060-11069. PubMed ID: 30584656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen-Binding Hepatocyte Growth Factor (HGF) alone or with a Gelatin- furfurylamine Hydrogel Enhances Functional Recovery in Mice after Spinal Cord Injury.
    Yamane K; Mazaki T; Shiozaki Y; Yoshida A; Shinohara K; Nakamura M; Yoshida Y; Zhou D; Kitajima T; Tanaka M; Ito Y; Ozaki T; Matsukawa A
    Sci Rep; 2018 Jan; 8(1):917. PubMed ID: 29343699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Gelatin Microsphere Scaffolds Promote Functional Recovery after Spinal Cord Hemisection in Rats.
    Ke H; Yang H; Zhao Y; Li T; Xin D; Gai C; Jiang Z; Wang Z
    Adv Sci (Weinh); 2023 Jan; 10(3):e2204528. PubMed ID: 36453595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retracted: Preparation of Drug Sustained-Release Scaffold with De-Epithelized Human Amniotic Epithelial Cells and Thiolated Chitosan Nanocarriers and Its Repair Effect on Spinal Cord Injury.
    Engineering JOH
    J Healthc Eng; 2023; 2023():9793628. PubMed ID: 36776952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds.
    Liu C; Huang Y; Pang M; Yang Y; Li S; Liu L; Shu T; Zhou W; Wang X; Rong L; Liu B
    PLoS One; 2015; 10(3):e0117709. PubMed ID: 25803031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair.
    Liu X; Song S; Chen Z; Gao C; Li Y; Luo Y; Huang J; Zhang Z
    Acta Biomater; 2022 Oct; 151():148-162. PubMed ID: 36002129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of chitosan and sodium alginate scaffolds for repair of spinal cord injury in rats.
    Yao ZA; Chen FJ; Cui HL; Lin T; Guo N; Wu HG
    Neural Regen Res; 2018 Mar; 13(3):502-509. PubMed ID: 29623937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of gelatin sponge scaffolds and PLGA scaffolds transplanted to completely transected spinal cord of rat.
    Du BL; Zeng CG; Zhang W; Quan DP; Ling EA; Zeng YS
    J Biomed Mater Res A; 2014 Jun; 102(6):1715-25. PubMed ID: 23776140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proliferation and differentiation study of melatonin functionalized polycaprolactone/gelatin electrospun fibrous scaffolds for nerve tissue engineering.
    Chen T; Jiang H; Li X; Zhang D; Zhu Y; Chen X; Yang H; Shen F; Xia H; Zheng J; Xie K
    Int J Biol Macromol; 2022 Feb; 197():103-110. PubMed ID: 34968534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bridging SF/Alg composite scaffold loaded NGF for spinal cord injury repair.
    Jiao G; Pan Y; Wang C; Li Z; Li Z; Guo R
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():81-87. PubMed ID: 28482594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polycaprolactone/polysialic acid hybrid, multifunctional nanofiber scaffolds for treatment of spinal cord injury.
    Zhang S; Wang XJ; Li WS; Xu XL; Hu JB; Kang XQ; Qi J; Ying XY; You J; Du YZ
    Acta Biomater; 2018 Sep; 77():15-27. PubMed ID: 30126591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchically Ordered Porous and High-Volume Polycaprolactone Microchannel Scaffolds Enhanced Axon Growth in Transected Spinal Cords.
    Shahriari D; Koffler JY; Tuszynski MH; Campana WM; Sakamoto JS
    Tissue Eng Part A; 2017 May; 23(9-10):415-425. PubMed ID: 28107810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A combination of GDNF and hUCMSC transplantation loaded on SF/AGs composite scaffolds for spinal cord injury repair.
    Jiao G; Lou G; Mo Y; Pan Y; Zhang Z; Guo R; Li Z
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():230-237. PubMed ID: 28254289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.