These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37388295)

  • 1. Fluorescent Waveguide Lattices for Enhanced Light Harvesting and Solar Cell Performance.
    Ding N; Hosein ID
    ACS Appl Energy Mater; 2023 Jun; 6(12):6646-6655. PubMed ID: 37388295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multidirectional Polymer Waveguide Lattices for Enhanced Ultrawide-Angle Light Capture in Silicon Solar Cells.
    Ding N; Hosein ID
    ACS Appl Energy Mater; 2022 Aug; 5(8):9980-9993. PubMed ID: 36034761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer Encapsulants Incorporating Light-Guiding Architectures to Increase Optical Energy Conversion in Solar Cells.
    Biria S; Chen FH; Pathreeker S; Hosein ID
    Adv Mater; 2018 Feb; 30(8):. PubMed ID: 29271510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators.
    Banal JL; Zhang B; Jones DJ; Ghiggino KP; Wong WW
    Acc Chem Res; 2017 Jan; 50(1):49-57. PubMed ID: 27992172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General point dipole theory for periodic metasurfaces: magnetoelectric scattering lattices coupled to planar photonic structures.
    Chen Y; Zhang Y; Femius Koenderink A
    Opt Express; 2017 Sep; 25(18):21358-21378. PubMed ID: 29041435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing light capture in silicon solar cells with encapsulants incorporating air prisms to reduce metallic contact losses.
    Chen FH; Pathreeker S; Kaur J; Hosein ID
    Opt Express; 2016 Oct; 24(22):A1419-A1430. PubMed ID: 27828526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Upconversion Efficiency Based on Cross-Patterned Upconversion Material Slot Waveguides on a Silicon Layer.
    Kim Y; Moon K; Lee YJ; Hong S; Kwon SH
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfiber Optic Arrays as Top Coatings for Front-Contact Solar Cells toward Mitigation of Shading Loss.
    Chen FH; Biria S; Li H; Hosein ID
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47422-47427. PubMed ID: 31755693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale observation of waveguide modes enhancing the efficiency of solar cells.
    Paetzold UW; Lehnen S; Bittkau K; Rau U; Carius R
    Nano Lett; 2014 Nov; 14(11):6599-605. PubMed ID: 25350265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles.
    Chen G; Yang C; Prasad PN
    Acc Chem Res; 2013 Jul; 46(7):1474-86. PubMed ID: 23339661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optochemical organization in a spatially modulated incandescent field: a single-step route to black and bright polymer lattices.
    Kasala K; Saravanamuttu K
    Langmuir; 2013 Jan; 29(4):1221-7. PubMed ID: 23252718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides.
    Lee SM; Dhar P; Chen H; Montenegro A; Liaw L; Kang D; Gai B; Benderskii AV; Yoon J
    ACS Nano; 2017 Apr; 11(4):4077-4085. PubMed ID: 28402101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced near-infrared to visible upconversion nanoparticles of Ho³⁺-Yb³⁺-F⁻ tri-doped TiO₂ and its application in dye-sensitized solar cells with 37% improvement in power conversion efficiency.
    Yu J; Yang Y; Fan R; Liu D; Wei L; Chen S; Li L; Yang B; Cao W
    Inorg Chem; 2014 Aug; 53(15):8045-53. PubMed ID: 25019645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of dyes and matrices for dye doped polymer waveguide emitters covering the visible spectrum.
    Paz LF; Caño-García M; Geday MA; Otón JM; Quintana X
    Sci Rep; 2022 Apr; 12(1):6142. PubMed ID: 35414649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.
    Leem JW; Choi M; Yu JS
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2349-58. PubMed ID: 25622310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials.
    Li D; Ågren H; Chen G
    Dalton Trans; 2018 Jul; 47(26):8526-8537. PubMed ID: 29388652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dye distance mapping using waveguide evanescent field fluorescence microscopy and its application to cell biology.
    Fleissner F; Morawitz M; Dixon SJ; Langbein U; Mittler S
    J Biophotonics; 2015 Oct; 8(10):826-37. PubMed ID: 25401699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced light harvesting from Först-type resonance energy transfer in the quasi-solid state dye-sensitized solar cells.
    Trang TT; Cheon JH; Lee JG; Kim JH
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3301-4. PubMed ID: 22849111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun PVA Polymer Embedded with Ceria Nanoparticles as Silicon Solar Cells Rear Surface Coaters for Efficiency Improvement.
    Samir E; Salah M; Hajjiah A; Shehata N; Fathy M; Hamed A
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.