These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37388314)

  • 1. A glimpse into the foraging and movement behaviour of
    Niga Y; Fujioka E; Heim O; Nomi A; Fukui D; Hiryu S
    R Soc Open Sci; 2023 Jun; 10(6):230035. PubMed ID: 37388314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Echolocating bats prefer a high risk-high gain foraging strategy to increase prey profitability.
    Stidsholt L; Hubancheva A; Greif S; Goerlitz HR; Johnson M; Yovel Y; Madsen PT
    Elife; 2023 Apr; 12():. PubMed ID: 37070239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and validation of common noctule bats (Nyctalus noctula) with a pulse radar and acoustic monitoring in the proximity of an onshore wind turbine.
    Krapivnitckaia P; Kreutzfeldt J; Schritt H; Reimers H; Floeter C; Reich M; Kunz VD
    PLoS One; 2024; 19(6):e0299153. PubMed ID: 38865295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Habitat use of bats in relation to wind turbines revealed by GPS tracking.
    Roeleke M; Blohm T; Kramer-Schadt S; Yovel Y; Voigt CC
    Sci Rep; 2016 Jul; 6():28961. PubMed ID: 27373219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discriminating predation attempt outcomes during natural foraging using the post-buzz pause in the Japanese large-footed bat, Myotis macrodactylus.
    Mizuguchi Y; Fujioka E; Heim O; Fukui D; Hiryu S
    J Exp Biol; 2022 Apr; 225(7):. PubMed ID: 35202457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does similarity in call structure or foraging ecology explain interspecific information transfer in wild
    Hügel T; van Meir V; Muñoz-Meneses A; Clarin BM; Siemers BM; Goerlitz HR
    Behav Ecol Sociobiol; 2017; 71(11):168. PubMed ID: 29200602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis.
    Faure PA; Barclay RM
    J Comp Physiol A; 1994 May; 174(5):651-60. PubMed ID: 8006859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coastal onshore wind turbines lead to habitat loss for bats in Northern Germany.
    Reusch C; Lozar M; Kramer-Schadt S; Voigt CC
    J Environ Manage; 2022 May; 310():114715. PubMed ID: 35240570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing evidence that bats actively forage at wind turbines.
    Foo CF; Bennett VJ; Hale AM; Korstian JM; Schildt AJ; Williams DA
    PeerJ; 2017; 5():e3985. PubMed ID: 29114441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining acoustic tracking and LiDAR to study bat flight behaviour in three-dimensional space.
    Hermans C; Koblitz JC; Bartholomeus H; Stilz P; Visser ME; Spoelstra K
    Mov Ecol; 2023 Apr; 11(1):25. PubMed ID: 37101233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A whispering bat that screams: bimodal switch of foraging guild from gleaning to aerial hawking in the desert long-eared bat.
    Hackett TD; Korine C; Holderied MW
    J Exp Biol; 2014 Sep; 217(Pt 17):3028-32. PubMed ID: 24948640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Common noctules exploit low levels of the aerosphere.
    O'Mara MT; Wikelski M; Kranstauber B; Dechmann DKN
    R Soc Open Sci; 2019 Feb; 6(2):181942. PubMed ID: 30891300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wind farm facilities in Germany kill noctule bats from near and far.
    Lehnert LS; Kramer-Schadt S; Schönborn S; Lindecke O; Niermann I; Voigt CC
    PLoS One; 2014; 9(8):e103106. PubMed ID: 25118805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerial-hawking bats adjust their use of space to the lunar cycle.
    Roeleke M; Teige T; Hoffmeister U; Klingler F; Voigt CC
    Mov Ecol; 2018; 6():11. PubMed ID: 30123507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity Pattern and Correlation between Bat and Insect Abundance at Wind Turbines in South Sweden.
    de Jong J; Millon L; Håstad O; Victorsson J
    Animals (Basel); 2021 Nov; 11(11):. PubMed ID: 34828001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wind energy production in forests conflicts with tree-roosting bats.
    Reusch C; Paul AA; Fritze M; Kramer-Schadt S; Voigt CC
    Curr Biol; 2023 Feb; 33(4):737-743.e3. PubMed ID: 36681078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Echolocating bats use future-target information for optimal foraging.
    Fujioka E; Aihara I; Sumiya M; Aihara K; Hiryu S
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4848-52. PubMed ID: 27071082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drone exploration of bat echolocation: A UAV-borne multimicrophone array to study bat echolocation.
    Jespersen C; Docherty D; Hallam J; Albertsen C; Jakobsen L
    Ecol Evol; 2022 Dec; 12(12):e9577. PubMed ID: 36479036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic identification of eight species of bat (mammalia: chiroptera) inhabiting forests of southern hokkaido, Japan: potential for conservation monitoring.
    Fukui D; Agetsuma N; Hill DA
    Zoolog Sci; 2004 Sep; 21(9):947-55. PubMed ID: 15459453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-acoustic tracking and localization using heterogeneous, scalable microphone arrays.
    Verreycken E; Simon R; Quirk-Royal B; Daems W; Barber J; Steckel J
    Commun Biol; 2021 Nov; 4(1):1275. PubMed ID: 34759372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.