These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 37389057)

  • 1. Nanotechnology-based radiation therapy to cure cancer and the challenges in its clinical applications.
    Arif M; Nawaz AF; Ullah Khan S; Mueen H; Rashid F; Hemeg HA; Rauf A
    Heliyon; 2023 Jun; 9(6):e17252. PubMed ID: 37389057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Refined Application and Evolution of Nanotechnology in Enhancing Radiosensitivity During Radiotherapy: Transitioning from Gold Nanoparticles to Multifunctional Nanomaterials.
    Zhang A; Gao L
    Int J Nanomedicine; 2023; 18():6233-6256. PubMed ID: 37936951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy.
    Song G; Cheng L; Chao Y; Yang K; Liu Z
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28643452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotechnology: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2006; 6(19):1-43. PubMed ID: 23074489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential Applications of Nanoparticles in Improving the Outcome of Lung Cancer Treatment.
    Girigoswami A; Girigoswami K
    Genes (Basel); 2023 Jun; 14(7):. PubMed ID: 37510275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of nanomedicine in radiotherapy sensitization.
    Song X; Sun Z; Li L; Zhou L; Yuan S
    Front Oncol; 2023; 13():1088878. PubMed ID: 36874097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folic Acid-Conjugated Radioluminescent Calcium Tungstate Nanoparticles as Radio-Sensitizers for Cancer Radiotherapy.
    Pizzuti VJ; Misra R; Lee J; Torregrosa-Allen SE; Currie MP; Clark SR; Patel AP; Schorr CR; Jones-Hall Y; Childress MO; Plantenga JM; Rancilio NJ; Elzey BD; Won YY
    ACS Biomater Sci Eng; 2019 Sep; 5(9):4776-4789. PubMed ID: 33448820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of recent nanotechnology in enhancing the efficacy of radiation therapy.
    Bergs JW; Wacker MG; Hehlgans S; Piiper A; Multhoff G; Rödel C; Rödel F
    Biochim Biophys Acta; 2015 Aug; 1856(1):130-43. PubMed ID: 26142869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Multifunctional Nanomaterials in Radioprotection of Healthy Tissues.
    Xie J; Wang C; Zhao F; Gu Z; Zhao Y
    Adv Healthc Mater; 2018 Oct; 7(20):e1800421. PubMed ID: 30019546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects of nanoparticle-based radioenhancement for radiotherapy.
    Gerken LRH; Gerdes ME; Pruschy M; Herrmann IK
    Mater Horiz; 2023 Oct; 10(10):4059-4082. PubMed ID: 37555747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes.
    Palazzolo S; Bayda S; Hadla M; Caligiuri I; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4224-4268. PubMed ID: 28875844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional high-
    Chen J; Dong H; Bai L; Li L; Chen S; Tian X; Pan Y
    J Mater Chem B; 2022 Mar; 10(9):1328-1342. PubMed ID: 35018941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy.
    Nawaz W; Xu S; Li Y; Huang B; Wu X; Wu Z
    Acta Biomater; 2020 Jun; 109():21-36. PubMed ID: 32294554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotechnology-based immunotherapies to combat cancer metastasis.
    Zhao Y; Bilal M; Qindeel M; Khan MI; Dhama K; Iqbal HMN
    Mol Biol Rep; 2021 Sep; 48(9):6563-6580. PubMed ID: 34424444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytochemical-Based Nanomaterials against Antibiotic-Resistant Bacteria: An Updated Review.
    Díaz-Puertas R; Álvarez-Martínez FJ; Falco A; Barrajón-Catalán E; Mallavia R
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging strategies based on nanomaterials for ionizing radiation-optimized drug treatment of cancer.
    Yi X; Shen M; Liu X; Gu J
    Nanoscale; 2021 Sep; 13(33):13943-13961. PubMed ID: 34477676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Photodynamic Therapy: Metal-Based Nanoparticles as Tools to Improve Cancer Therapy.
    Mariano S; Carata E; Calcagnile L; Panzarini E
    Pharmaceutics; 2024 Jul; 16(7):. PubMed ID: 39065629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable nanotechnology based wastewater treatment strategies: achievements, challenges and future perspectives.
    Bhat SA; Sher F; Hameed M; Bashir O; Kumar R; Vo DN; Ahmad P; Lima EC
    Chemosphere; 2022 Feb; 288(Pt 3):132606. PubMed ID: 34678350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy.
    Chen Y; Yang J; Fu S; Wu J
    Int J Nanomedicine; 2020; 15():9407-9430. PubMed ID: 33262595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current applications of nanomaterials in urinary system tumors.
    Qian Z; Zhang Y; Yuan J; Gong S; Chen B
    Front Bioeng Biotechnol; 2023; 11():1111977. PubMed ID: 36890910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.