These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 37389066)
1. Engine remaining useful life prediction model based on R-Vine copula with multi-sensor data. Liu S; Jiang H Heliyon; 2023 Jun; 9(6):e17118. PubMed ID: 37389066 [TBL] [Abstract][Full Text] [Related]
2. Adaptive Wiener process-based remaining useful life prediction method considering multi-source variability. Zheng J; Dong Q; Wang X; Zhang Q; Du D Heliyon; 2024 Aug; 10(16):e35925. PubMed ID: 39224300 [TBL] [Abstract][Full Text] [Related]
3. Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes. Wang D; Xian X; Song C IEEE Trans Autom Sci Eng; 2024 Apr; 21(2):1421-1433. PubMed ID: 38595999 [TBL] [Abstract][Full Text] [Related]
4. Aircraft Engine Prognostics Based on Informative Sensor Selection and Adaptive Degradation Modeling with Functional Principal Component Analysis. Zhang B; Zheng K; Huang Q; Feng S; Zhou S; Zhang Y Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050483 [TBL] [Abstract][Full Text] [Related]
5. Few-shot RUL prediction for engines based on CNN-GRU model. Sun S; Wang J; Xiao Y; Peng J; Zhou X Sci Rep; 2024 Jul; 14(1):16041. PubMed ID: 38992098 [TBL] [Abstract][Full Text] [Related]
6. Deep Bidirectional Recurrent Neural Networks Ensemble for Remaining Useful Life Prediction of Aircraft Engine. Hu K; Cheng Y; Wu J; Zhu H; Shao X IEEE Trans Cybern; 2023 Apr; 53(4):2531-2543. PubMed ID: 34822334 [TBL] [Abstract][Full Text] [Related]
7. A similarity based methodology for machine prognostics by using kernel two sample test. Cai H; Jia X; Feng J; Li W; Pahren L; Lee J ISA Trans; 2020 Aug; 103():112-121. PubMed ID: 32171595 [TBL] [Abstract][Full Text] [Related]
8. An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism. Li H; Wang Z; Li Z PeerJ Comput Sci; 2022; 8():e1084. PubMed ID: 36091994 [TBL] [Abstract][Full Text] [Related]
9. Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network. Wu J; Hu K; Cheng Y; Zhu H; Shao X; Wang Y ISA Trans; 2020 Feb; 97():241-250. PubMed ID: 31300159 [TBL] [Abstract][Full Text] [Related]
10. Hybrid Degradation Equipment Remaining Useful Life Prediction Oriented Parallel Simulation considering Model Soft Switch. Ge C; Zhu Y; Di Y Comput Intell Neurosci; 2019; 2019():9179870. PubMed ID: 30992700 [TBL] [Abstract][Full Text] [Related]
11. Remaining Useful Life Prediction for Two-Phase Nonlinear Degrading Systems with Three-Source Variability. Cui X; Lu J; Han Y Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203026 [TBL] [Abstract][Full Text] [Related]
12. Three-Stage Wiener-Process-Based Model for Remaining Useful Life Prediction of a Cutting Tool in High-Speed Milling. Liu W; Yang WA; You Y Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808259 [TBL] [Abstract][Full Text] [Related]
13. A hybrid PCA-CART-MARS-based prognostic approach of the remaining useful life for aircraft engines. Sánchez Lasheras F; García Nieto PJ; de Cos Juez FJ; Mayo Bayón R; González Suárez VM Sensors (Basel); 2015 Mar; 15(3):7062-83. PubMed ID: 25806876 [TBL] [Abstract][Full Text] [Related]
14. Aircraft engine sensor fault diagnostics using an on-line OBEM update method. Liu X; Xue N; Yuan Y PLoS One; 2017; 12(2):e0171037. PubMed ID: 28182692 [TBL] [Abstract][Full Text] [Related]
15. Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion. Peng C; Chen Y; Gui W; Tang Z; Li C Sci Rep; 2022 Apr; 12(1):6491. PubMed ID: 35444248 [TBL] [Abstract][Full Text] [Related]
16. A Digital-Twin Framework for Predicting the Remaining Useful Life of Piezoelectric Vibration Sensors with Sensitivity Degradation Modeling. Fu C; Gao C; Zhang W Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837003 [TBL] [Abstract][Full Text] [Related]
17. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network. Song L; Wu J; Wang L; Chen G; Shi Y; Liu Z Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238553 [TBL] [Abstract][Full Text] [Related]
18. Adaptively Lightweight Spatiotemporal Information-Extraction-Operator-Based DL Method for Aero-Engine RUL Prediction. Shi J; Gao J; Xiang S Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37448012 [TBL] [Abstract][Full Text] [Related]
19. A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics. Verstraete D; Droguett E; Modarres M Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31892260 [TBL] [Abstract][Full Text] [Related]
20. The Remaining Useful Life Prediction Method of a Hydraulic Pump under Unknown Degradation Model with Limited Data. Wu F; Tang J; Jiang Z; Sun Y; Chen Z; Guo B Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]