These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37389192)
21. Coupling Carbon Capture from a Power Plant with Semi-automated Open Raceway Ponds for Microalgae Cultivation. Acedo M; Gonzalez Cena JR; Kiehlbaugh KM; Ogden KL J Vis Exp; 2020 Aug; (162):. PubMed ID: 32865530 [TBL] [Abstract][Full Text] [Related]
22. Sustainable valorization of algae biomass via thermochemical processing route: An overview. Ayub HMU; Ahmed A; Lam SS; Lee J; Show PL; Park YK Bioresour Technol; 2022 Jan; 344(Pt B):126399. PubMed ID: 34822981 [TBL] [Abstract][Full Text] [Related]
23. A critical overview of upstream cultivation and downstream processing of algae-based biofuels: Opportunity, technological barriers and future perspective. Ahmad S; Iqbal K; Kothari R; Singh HM; Sari A; Tyagi VV J Biotechnol; 2022 Jun; 351():74-98. PubMed ID: 35427696 [TBL] [Abstract][Full Text] [Related]
24. Microalgae as a raw material for biofuels production. Gouveia L; Oliveira AC J Ind Microbiol Biotechnol; 2009 Feb; 36(2):269-74. PubMed ID: 18982369 [TBL] [Abstract][Full Text] [Related]
25. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Leng L; Li J; Wen Z; Zhou W Bioresour Technol; 2018 May; 256():529-542. PubMed ID: 29459104 [TBL] [Abstract][Full Text] [Related]
26. Environmental performance of algal biofuel technology options. Vasudevan V; Stratton RW; Pearlson MN; Jersey GR; Beyene AG; Weissman JC; Rubino M; Hileman JI Environ Sci Technol; 2012 Feb; 46(4):2451-9. PubMed ID: 22324757 [TBL] [Abstract][Full Text] [Related]
27. Recent developments and key barriers to advanced biofuels: A short review. Oh YK; Hwang KR; Kim C; Kim JR; Lee JS Bioresour Technol; 2018 Jun; 257():320-333. PubMed ID: 29523378 [TBL] [Abstract][Full Text] [Related]
28. Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem. Venkata Subhash G; Rajvanshi M; Raja Krishna Kumar G; Shankar Sagaram U; Prasad V; Govindachary S; Dasgupta S Bioresour Technol; 2022 Jan; 343():126155. PubMed ID: 34673195 [TBL] [Abstract][Full Text] [Related]
29. Research Priorities and Trends on Bioenergy: Insights from Bibliometric Analysis. Yuan R; Pu J; Wu D; Wu Q; Huhe T; Lei T; Chen Y Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497955 [TBL] [Abstract][Full Text] [Related]
30. Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Batan L; Quinn J; Willson B; Bradley T Environ Sci Technol; 2010 Oct; 44(20):7975-80. PubMed ID: 20866061 [TBL] [Abstract][Full Text] [Related]
31. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Je S; Yamaoka Y J Microbiol Biotechnol; 2022 Nov; 32(11):1357-1372. PubMed ID: 36310359 [TBL] [Abstract][Full Text] [Related]
32. Employing algal biomass for fabrication of biofuels subsequent to phytoremediation. Kumari S; Kumari S; Singh A; Pandit PP; Sankhla MS; Singh T; Singh GP; Lodha P; Awasthi G; Awasthi KK Int J Phytoremediation; 2023; 25(8):941-955. PubMed ID: 36222270 [TBL] [Abstract][Full Text] [Related]
33. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction. Cheng J; Huang R; Yu T; Li T; Zhou J; Cen K Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493 [TBL] [Abstract][Full Text] [Related]
34. Environment-enhancing process for algal wastewater treatment, heavy metal control and hydrothermal biofuel production: A critical review. Li H; Watson J; Zhang Y; Lu H; Liu Z Bioresour Technol; 2020 Feb; 298():122421. PubMed ID: 31767428 [TBL] [Abstract][Full Text] [Related]
35. Safflower-based biorefinery producing a broad spectrum of biofuels and biochemicals: A life cycle assessment perspective. Hosseinzadeh-Bandbafha H; Nazemi F; Khounani Z; Ghanavati H; Shafiei M; Karimi K; Lam SS; Aghbashlo M; Tabatabaei M Sci Total Environ; 2022 Jan; 802():149842. PubMed ID: 34455274 [TBL] [Abstract][Full Text] [Related]
36. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035. Clark NN; Johnson DR; McKain DL; Wayne WS; Li H; Rudek J; Mongold RA; Sandoval C; Covington AN; Hailer JT J Air Waste Manag Assoc; 2017 Dec; 67(12):1328-1341. PubMed ID: 28829681 [TBL] [Abstract][Full Text] [Related]
37. Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Khoo KS; Chew KW; Yew GY; Leong WH; Chai YH; Show PL; Chen WH Bioresour Technol; 2020 May; 304():122996. PubMed ID: 32115347 [TBL] [Abstract][Full Text] [Related]
38. Vibration, acoustic and emission characteristics of the chlorella vulgaris microalgae oil in compression ignition engine to mitigate environmental pollution. Sangeetha M; Boomadevi P; Khalifa AS; Brindhadevi K; Sekar M Chemosphere; 2022 Apr; 293():133475. PubMed ID: 34974045 [TBL] [Abstract][Full Text] [Related]
40. A Perspective on Biofuels Use and CCS for GHG Mitigation in the Marine Sector. Mukherjee A; Bruijnincx P; Junginger M iScience; 2020 Nov; 23(11):101758. PubMed ID: 33241203 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]