These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 37389335)

  • 21. Current Methods, Common Practices, and Perspectives in Tracking and Monitoring Bioinoculants in Soil.
    Manfredini A; Malusà E; Costa C; Pallottino F; Mocali S; Pinzari F; Canfora L
    Front Microbiol; 2021; 12():698491. PubMed ID: 34531836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antagonistic Activity of Volatile Organic Compounds Produced by Acid-Tolerant Pseudomonas protegens CLP-6 as Biological Fumigants To Control Tobacco Bacterial Wilt Caused by Ralstonia solanacearum.
    Zhao Q; Cao J; Cai X; Wang J; Kong F; Wang D; Wang J
    Appl Environ Microbiol; 2023 Feb; 89(2):e0189222. PubMed ID: 36722969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deciphering the antimicrobial activity of multifaceted rhizospheric biocontrol agents of solanaceous crops
    Rahman M; Borah SM; Borah PK; Bora P; Sarmah BK; Lal MK; Tiwari RK; Kumar R
    Front Plant Sci; 2023; 14():1141506. PubMed ID: 36938007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trichoderma for climate resilient agriculture.
    Kashyap PL; Rai P; Srivastava AK; Kumar S
    World J Microbiol Biotechnol; 2017 Aug; 33(8):155. PubMed ID: 28695465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacteriophage-Based Bacterial Wilt Biocontrol for an Environmentally Sustainable Agriculture.
    Álvarez B; Biosca EG
    Front Plant Sci; 2017; 8():1218. PubMed ID: 28769942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patent landscaping and citation network analysis to reveal the global research trends in biopriming using microbial inoculants: an insight toward sustainable agriculture.
    Thakur R; Yadav S
    Biol Futur; 2023 Dec; 74(4):545-556. PubMed ID: 37995047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial Network and Soil Properties Are Changed in Bacterial Wilt-Susceptible Soil.
    Qi G; Ma G; Chen S; Lin C; Zhao X
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31003986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial Interactions Within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease.
    Niu B; Wang W; Yuan Z; Sederoff RR; Sederoff H; Chiang VL; Borriss R
    Front Microbiol; 2020; 11():585404. PubMed ID: 33162962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multifunctional role of Actinobacteria in agricultural production sustainability: A review.
    Boubekri K; Soumare A; Mardad I; Lyamlouli K; Ouhdouch Y; Hafidi M; Kouisni L
    Microbiol Res; 2022 Aug; 261():127059. PubMed ID: 35584559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review.
    Zehra A; Raytekar NA; Meena M; Swapnil P
    Curr Res Microb Sci; 2021 Dec; 2():100054. PubMed ID: 34841345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial inoculants: potential tool for sustainability of agricultural production systems.
    Sammauria R; Kumawat S; Kumawat P; Singh J; Jatwa TK
    Arch Microbiol; 2020 May; 202(4):677-693. PubMed ID: 31897539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture.
    Sun W; Shahrajabian MH
    Plants (Basel); 2023 Aug; 12(17):. PubMed ID: 37687348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Screening, identification and evaluation of an acidophilic strain of
    Meng XJ; Wang LQ; Ma BG; Wei XH; Zhou Y; Sun ZX; Li YY
    Front Plant Sci; 2024; 15():1360173. PubMed ID: 38751839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymicrobial Multi-functional Approach for Enhancement of Crop Productivity.
    Reddy CA; Saravanan RS
    Adv Appl Microbiol; 2013; 82():53-113. PubMed ID: 23415153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops.
    Majeed A; Muhammad Z; Ahmad H
    Plant Cell Rep; 2018 Dec; 37(12):1599-1609. PubMed ID: 30178214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial and Fungal Biocontrol Agents for Plant Disease Protection: Journey from Lab to Field, Current Status, Challenges, and Global Perspectives.
    Ayaz M; Li CH; Ali Q; Zhao W; Chi YK; Shafiq M; Ali F; Yu XY; Yu Q; Zhao JT; Yu JW; Qi RD; Huang WK
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant and soil-associated microbiome dynamics determine the fate of bacterial wilt pathogen Ralstonia solanacearum.
    Kashyap S; Sharma I; Dowarah B; Barman R; Gill SS; Agarwala N
    Planta; 2023 Aug; 258(3):57. PubMed ID: 37524889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops.
    Achari GA; Ramesh R
    Int J Microbiol; 2014; 2014():296521. PubMed ID: 24963298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Revisiting Plant-Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review.
    Vishwakarma K; Kumar N; Shandilya C; Mohapatra S; Bhayana S; Varma A
    Front Microbiol; 2020; 11():560406. PubMed ID: 33408698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.