BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37389988)

  • 1. Tryptophan in Multicomponent Petasis Reactions for Peptide Stapling and Late-Stage Functionalisation.
    Krajcovicova S; Spring DR
    Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202307782. PubMed ID: 37389988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing the Petasis Reaction for Late-Stage Multicomponent Diversification, Labeling, and Stapling of Peptides.
    Ricardo MG; Llanes D; Wessjohann LA; Rivera DG
    Angew Chem Int Ed Engl; 2019 Feb; 58(9):2700-2704. PubMed ID: 30589179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Peptide Backbone Stapling Strategy Enabled by the Multicomponent Incorporation of Amide N-Substituents.
    Ricardo MG; Marrrero JF; Valdés O; Rivera DG; Wessjohann LA
    Chemistry; 2019 Jan; 25(3):769-774. PubMed ID: 30412333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ideas Behind the Tryptophan-Mediated Petasis Reaction (TMPR) Concept for Peptide Stapling.
    Krajcovicova S
    ChemMedChem; 2024 May; ():e202400148. PubMed ID: 38726738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Methodology for Incorporating Chiral Linkers into Stapled Peptides.
    Serrano JC; Sipthorp J; Xu W; Itzhaki LS; Ley SV
    Chembiochem; 2017 Jun; 18(12):1066-1071. PubMed ID: 28388005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-phase synthesis, cyclization, and site-specific functionalization of aziridine-containing tetrapeptides.
    Chung BKW; White CJ; Yudin AK
    Nat Protoc; 2017 Jun; 12(6):1277-1287. PubMed ID: 28538738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New peptide architectures through C-H activation stapling between tryptophan-phenylalanine/tyrosine residues.
    Mendive-Tapia L; Preciado S; García J; Ramón R; Kielland N; Albericio F; Lavilla R
    Nat Commun; 2015 May; 6():7160. PubMed ID: 25994485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-Selective Polyfluoroaryl Modification and Unsymmetric Stapling of Unprotected Peptides.
    Wang M; Pan D; Zhang Q; Lei Y; Wang C; Jia H; Mou L; Miao X; Ren X; Xu Z
    J Am Chem Soc; 2024 Mar; 146(10):6675-6685. PubMed ID: 38427024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Peptide Stapling Strategy with Built-In Fluorescence by Direct Late-Stage C(sp
    Liu J; Liu X; Zhang F; Qu J; Sun H; Zhu Q
    Chemistry; 2020 Dec; 26(68):16122-16128. PubMed ID: 32864789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoselective Late-Stage Functionalization of Peptides via Photocatalytic C2-Alkylation of Tryptophan.
    Lee JC; Cuthbertson JD; Mitchell NJ
    Org Lett; 2023 Jul; 25(29):5459-5464. PubMed ID: 37462428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Solid-Phase Peptide Synthesis.
    Winkler DFH
    Methods Mol Biol; 2020; 2103():59-94. PubMed ID: 31879919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decarboxylative Couplings for Late-Stage Peptide Modifications.
    Zhang MY; Malins LR
    Methods Mol Biol; 2020; 2103():275-285. PubMed ID: 31879933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multicomponent Stapling Approach to Exocyclic Functionalized Helical Peptides: Adding Lipids, Sugars, PEGs, Labels, and Handles to the Lactam Bridge.
    Vasco AV; Méndez Y; Porzel A; Balbach J; Wessjohann LA; Rivera DG
    Bioconjug Chem; 2019 Jan; 30(1):253-259. PubMed ID: 30575393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity-Oriented Peptide Stapling: A Third Generation Copper-Catalysed Azide-Alkyne Cycloaddition Stapling and Functionalisation Strategy.
    Tran PT; Larsen CØ; Røndbjerg T; De Foresta M; Kunze MB; Marek A; Løper JH; Boyhus LE; Knuhtsen A; Lindorff-Larsen K; Pedersen DS
    Chemistry; 2017 Mar; 23(14):3490-3495. PubMed ID: 28106305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress and perspectives on directing group-assisted palladium-catalysed C-H functionalisation of amino acids and peptides.
    Shabani S; Wu Y; Ryan HG; Hutton CA
    Chem Soc Rev; 2021 Aug; 50(16):9278-9343. PubMed ID: 34254063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quaternary β
    Yu JS; Noda H; Shibasaki M
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):818-822. PubMed ID: 29168280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid phase synthesis of peptides containing backbone-fluorinated amino acids.
    Hunter L; Butler S; Ludbrook SB
    Org Biomol Chem; 2012 Nov; 10(44):8911-8. PubMed ID: 23051910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native Chemical Ligation via N-Acylurea Thioester Surrogates Obtained by Fmoc Solid-Phase Peptide Synthesis.
    Palà-Pujadas J; Blanco-Canosa JB
    Methods Mol Biol; 2020; 2133():141-161. PubMed ID: 32144666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular synthesis of clickable peptides via late-stage maleimidation on C(7)-H tryptophan.
    Wang P; Liu J; Zhu X; Kenry ; Yan Z; Yan J; Jiang J; Fu M; Ge J; Zhu Q; Zheng Y
    Nat Commun; 2023 Jul; 14(1):3973. PubMed ID: 37407547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative Modification of Tryptophan-Containing Peptides.
    Petersen J; Christensen KE; Nielsen MT; Mortensen KT; Komnatnyy VV; Nielsen TE; Qvortrup K
    ACS Comb Sci; 2018 Jun; 20(6):344-349. PubMed ID: 29719155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.