These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 37390109)

  • 1. Relaxing parametric assumptions for non-linear Mendelian randomization using a doubly-ranked stratification method.
    Tian H; Mason AM; Liu C; Burgess S
    PLoS Genet; 2023 Jun; 19(6):e1010823. PubMed ID: 37390109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Violation of the Constant Genetic Effect Assumption Can Result in Biased Estimates for Non-Linear Mendelian Randomization.
    Burgess S
    Hum Hered; 2023; 88(1):79-90. PubMed ID: 37651993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A data-adaptive method for investigating effect heterogeneity with high-dimensional covariates in Mendelian randomization.
    Tian H; Tom BDM; Burgess S
    BMC Med Res Methodol; 2024 Feb; 24(1):34. PubMed ID: 38341532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of the instrumental inequalities in simulated mendelian randomization analyses with coarsened exposures.
    Diemer EW; Shi J; Hernan MA; Swanson SA
    Eur J Epidemiol; 2024 May; 39(5):491-499. PubMed ID: 38819552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avoiding collider bias in Mendelian randomization when performing stratified analyses.
    Coscia C; Gill D; Benítez R; Pérez T; Malats N; Burgess S
    Eur J Epidemiol; 2022 Jul; 37(7):671-682. PubMed ID: 35639294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-linear Mendelian randomization: detection of biases using negative controls with a focus on BMI, Vitamin D and LDL cholesterol.
    Hamilton FW; Hughes DA; Spiller W; Tilling K; Davey Smith G
    Eur J Epidemiol; 2024 May; 39(5):451-465. PubMed ID: 38789826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization.
    Staley JR; Burgess S
    Genet Epidemiol; 2017 May; 41(4):341-352. PubMed ID: 28317167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of allele scores as instrumental variables for Mendelian randomization.
    Burgess S; Thompson SG
    Int J Epidemiol; 2013 Aug; 42(4):1134-44. PubMed ID: 24062299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression.
    Bowden J; Davey Smith G; Burgess S
    Int J Epidemiol; 2015 Apr; 44(2):512-25. PubMed ID: 26050253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of instrumental variable estimators for Mendelian randomization.
    Burgess S; Small DS; Thompson SG
    Stat Methods Med Res; 2017 Oct; 26(5):2333-2355. PubMed ID: 26282889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates.
    Burgess S; Labrecque JA
    Eur J Epidemiol; 2018 Oct; 33(10):947-952. PubMed ID: 30039250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mendelian randomization mixed-scale treatment effect robust identification and estimation for causal inference.
    Liu Z; Ye T; Sun B; Schooling M; Tchetgen ET
    Biometrics; 2023 Sep; 79(3):2208-2219. PubMed ID: 35950778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways.
    Burgess S; Daniel RM; Butterworth AS; Thompson SG;
    Int J Epidemiol; 2015 Apr; 44(2):484-95. PubMed ID: 25150977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing for non-linear causal effects using a binary genotype in a Mendelian randomization study: application to alcohol and cardiovascular traits.
    Silverwood RJ; Holmes MV; Dale CE; Lawlor DA; Whittaker JC; Smith GD; Leon DA; Palmer T; Keating BJ; Zuccolo L; Casas JP; Dudbridge F;
    Int J Epidemiol; 2014 Dec; 43(6):1781-90. PubMed ID: 25192829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption.
    Bowden J; Del Greco M F; Minelli C; Zhao Q; Lawlor DA; Sheehan NA; Thompson J; Davey Smith G
    Int J Epidemiol; 2019 Jun; 48(3):728-742. PubMed ID: 30561657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methodological challenges in mendelian randomization.
    VanderWeele TJ; Tchetgen Tchetgen EJ; Cornelis M; Kraft P
    Epidemiology; 2014 May; 25(3):427-35. PubMed ID: 24681576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instrumental variable analysis with a nonlinear exposure-outcome relationship.
    Burgess S; Davies NM; Thompson SG;
    Epidemiology; 2014 Nov; 25(6):877-85. PubMed ID: 25166881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Mendelian randomization with the sibling comparison design.
    Sjölander A; Frisell T; Öberg S; Wang Y; Hägg S
    Stat Med; 2024 Feb; 43(4):731-755. PubMed ID: 38073579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy.
    Rees JMB; Wood AM; Burgess S
    Stat Med; 2017 Dec; 36(29):4705-4718. PubMed ID: 28960498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Challenges and factors that influencing causal inference and interpretation, based on Mendelian randomization studies].
    Wang YZ; Shen HB
    Zhonghua Liu Xing Bing Xue Za Zhi; 2020 Aug; 41(8):1231-1236. PubMed ID: 32867428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.