These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37390721)
1. Rapid and naked-eye colorimetric detection of ultra trace sumatriptan in drinking water, saliva, and human urine samples based on the aggregation of gold nanoparticles. Minaee S; Reza Sohrabi M; Mortazavinik S Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123039. PubMed ID: 37390721 [TBL] [Abstract][Full Text] [Related]
2. Colorimetric Concurrent Determination of Ultra-Trace Amounts of Pilocarpine and Timolol as Anti-Glaucoma Drugs in Binary Mixtures Using a Multivariate Calibration Approach Based on the Aggregation of Gold Nanoparticles. Zanjani A; Sohrabi MR; Kabiri Fard H J AOAC Int; 2024 Jul; 107(4):592-599. PubMed ID: 38608200 [TBL] [Abstract][Full Text] [Related]
3. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples. Simon T; Shellaiah M; Steffi P; Sun KW; Ko FH Anal Chim Acta; 2018 Sep; 1023():96-104. PubMed ID: 29754612 [TBL] [Abstract][Full Text] [Related]
4. Development and validation of colorimetric-assisted chemometrics methods based on the localized gold nanoparticles surface plasmon resonance for fast simultaneous estimation of anti-hepatitis C virus drugs in their combined dosage form: A comparative study with HPLC method. Naeimi MS; Sohrabi MR; Mortazavinik S J Pharm Biomed Anal; 2024 Sep; 248():116300. PubMed ID: 38924879 [TBL] [Abstract][Full Text] [Related]
5. Assembly of 6-aza-2-thiothymine on gold nanoparticles for selective and sensitive colorimetric detection of pencycuron in water and food samples. Kailasa SK; Nguyen TP; Baek SH; Tu Phan LM; Rafique R; Park TJ Talanta; 2019 Dec; 205():120087. PubMed ID: 31450484 [TBL] [Abstract][Full Text] [Related]
6. A smartphone-based colorimetric assay using Au@Ag core-shell nanoparticles as the nanoprobes for visual tracing of fluvoxamine in biofluids as a common suicide drug. Madani-Nejad E; Shokrollahi A; Shahdost-Fard F Spectrochim Acta A Mol Biomol Spectrosc; 2023 Aug; 296():122665. PubMed ID: 37011439 [TBL] [Abstract][Full Text] [Related]
7. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide. Fu X; Chen L; Li J Analyst; 2012 Aug; 137(16):3653-8. PubMed ID: 22741162 [TBL] [Abstract][Full Text] [Related]
8. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. Kang J; Zhang Y; Li X; Miao L; Wu A ACS Appl Mater Interfaces; 2016 Jan; 8(1):1-5. PubMed ID: 26673452 [TBL] [Abstract][Full Text] [Related]
9. Colorimetric assay based on arginine-functionalized gold nanoparticles for the detection of dibutyl phthalate in Baijiu samples. Yan Y; Qu Y; Du R; Zhou W; Gao H; Lu R Anal Methods; 2021 Nov; 13(43):5179-5186. PubMed ID: 34672311 [TBL] [Abstract][Full Text] [Related]
10. Nanodiamonds conjugated to gold nanoparticles for colorimetric detection of clenbuterol and chromium(III) in urine. Shellaiah M; Simon T; Venkatesan P; Sun KW; Ko FH; Wu SP Mikrochim Acta; 2017 Dec; 185(1):74. PubMed ID: 29594526 [TBL] [Abstract][Full Text] [Related]
11. Thioglycolic acid-modified AuNPs as a colorimetric sensor for the rapid determination of the pesticide chlorpyrifos. Zhang H; Qu Y; Zhang Y; Yan Y; Gao H Anal Methods; 2022 May; 14(20):1996-2002. PubMed ID: 35535744 [TBL] [Abstract][Full Text] [Related]
12. Unmodified gold nanoparticles as a simple colorimetric probe for ramoplanin detection. Teepoo S; Chumsaeng P; Palasak K; Bousod N; Mhadbamrung N; Sae-lim P Talanta; 2013 Dec; 117():518-22. PubMed ID: 24209375 [TBL] [Abstract][Full Text] [Related]
13. Plasmon-based colorimetric assay using green synthesized gold nanoparticles for the detection of bisphenol A. Adem Z; Bekana D; Temesgen A; Teju E; Amde M; Jabesa A Anal Sci; 2024 Apr; 40(4):671-679. PubMed ID: 38238534 [TBL] [Abstract][Full Text] [Related]
14. Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles. Ratnarathorn N; Chailapakul O; Dungchai W Talanta; 2015 Jan; 132():613-8. PubMed ID: 25476352 [TBL] [Abstract][Full Text] [Related]
15. Highly selective, sensitive and simpler colorimetric sensor for Fe Siyal P; Nafady A; Sirajuddin ; Memon R; Tufail Hussain Sherazi S; Nisar J; Ali Siyal A; Raza Shah M; Ahmed Mahesar S; Bhagat S Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119645. PubMed ID: 33744706 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen bonding recognition and colorimetric detection of isoprenaline using 2-amino-5-mercapto-1,3,4-thiadiazol functionalized gold nanoparticles. Khezri S; Bahram M; Samadi N Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():522-527. PubMed ID: 28863401 [TBL] [Abstract][Full Text] [Related]
17. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. António M; Ferreira R; Vitorino R; Daniel-da-Silva AL Talanta; 2020 Jul; 214():120868. PubMed ID: 32278414 [TBL] [Abstract][Full Text] [Related]
18. Blue-to-red colorimetric sensing strategy for Hg²⁺ and Ag⁺ via redox-regulated surface chemistry of gold nanoparticles. Lou T; Chen Z; Wang Y; Chen L ACS Appl Mater Interfaces; 2011 May; 3(5):1568-73. PubMed ID: 21469714 [TBL] [Abstract][Full Text] [Related]
19. Colorimetric and smartphone-integrated paper device for on-site determination of arsenic (III) using sucrose modified gold nanoparticles as a nanoprobe. Shrivas K; Patel S; Sinha D; Thakur SS; Patle TK; Kant T; Dewangan K; Satnami ML; Nirmalkar J; Kumar S Mikrochim Acta; 2020 Feb; 187(3):173. PubMed ID: 32072273 [TBL] [Abstract][Full Text] [Related]
20. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Kumar N; Seth R; Kumar H Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]