These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37390901)

  • 21. Forest soil bacteria able to produce homo and copolymers of polyhydroxyalkanoates from several pure and waste carbon sources.
    Clifton-García B; González-Reynoso O; Robledo-Ortiz JR; Villafaña-Rojas J; González-García Y
    Lett Appl Microbiol; 2020 Apr; 70(4):300-309. PubMed ID: 31891417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial synthesis of poly(hydroxybutyrate- co-hydroxyvalerate) using carbohydrate-rich mahua (Madhuca sp.) flowers.
    Anil Kumar PK; Shamala TR; Kshama L; Prakash MH; Joshi GJ; Chandrashekar A; Latha Kumari KS; Divyashree MS
    J Appl Microbiol; 2007 Jul; 103(1):204-9. PubMed ID: 17584466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fed-batch polyhydroxybutyrate production by Paraburkholderia sacchari from a ternary mixture of glucose, xylose and arabinose.
    Li M; Wilkins MR
    Bioprocess Biosyst Eng; 2021 Jan; 44(1):185-193. PubMed ID: 32895870
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Burkholderia sacchari cell factory: production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures.
    Raposo RS; de Almeida MC; de Oliveira MD; da Fonseca MM; Cesário MT
    N Biotechnol; 2017 Jan; 34():12-22. PubMed ID: 27720861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosynthesis and accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-polyethylene glycol, a hybrid co-polymer by endophytic Bacillus cereus RCL 02.
    Das R; Pal A; Paul AK
    Bioprocess Biosyst Eng; 2019 May; 42(5):807-815. PubMed ID: 30707292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.
    Benesova P; Kucera D; Marova I; Obruca S
    Lett Appl Microbiol; 2017 Aug; 65(2):182-188. PubMed ID: 28585326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains.
    Davis R; Kataria R; Cerrone F; Woods T; Kenny S; O'Donovan A; Guzik M; Shaikh H; Duane G; Gupta VK; Tuohy MG; Padamatti RB; Casey E; O'Connor KE
    Bioresour Technol; 2013 Dec; 150():202-9. PubMed ID: 24177152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating Nutrient Limitation Role on Improvement of Growth and Poly(3-Hydroxybutyrate) Accumulation by
    Oliveira-Filho ER; Silva JGP; de Macedo MA; Taciro MK; Gomez JGC; Silva LF
    Front Bioeng Biotechnol; 2019; 7():416. PubMed ID: 31970153
    [No Abstract]   [Full Text] [Related]  

  • 29. Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources.
    Povolo S; Romanelli MG; Basaglia M; Ilieva VI; Corti A; Morelli A; Chiellini E; Casella S
    N Biotechnol; 2013 Sep; 30(6):629-34. PubMed ID: 23201074
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei.
    Ghosh S; Gnaim R; Greiserman S; Fadeev L; Gozin M; Golberg A
    Bioresour Technol; 2019 Jan; 271():166-173. PubMed ID: 30268011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyhydroxyalkanoate (PHA) production in open mixed cultures using waste activated sludge as biomass.
    Munir S; Jamil N
    Arch Microbiol; 2020 Sep; 202(7):1907-1913. PubMed ID: 32448962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of levulinic acid on production of polyhydroxyalkanoates from food waste by Haloferax mediterranei.
    Priya A; Hathi Z; Haque MA; Kumar S; Kumar A; Singh E; Lin CSK
    Environ Res; 2022 Nov; 214(Pt 3):114001. PubMed ID: 35934144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari.
    Guamán LP; Oliveira-Filho ER; Barba-Ostria C; Gomez JGC; Taciro MK; da Silva LF
    J Ind Microbiol Biotechnol; 2018 Mar; 45(3):165-173. PubMed ID: 29349569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains.
    Pernicova I; Kucera D; Nebesarova J; Kalina M; Novackova I; Koller M; Obruca S
    Bioresour Technol; 2019 Nov; 292():122028. PubMed ID: 31466820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Versatile aliphatic polyester biosynthesis system for producing random and block copolymers composed of 2-, 3-, 4-, 5-, and 6-hydroxyalkanoates using the sequence-regulating polyhydroxyalkanoate synthase PhaC
    Satoh K; Kawakami T; Isobe N; Pasquier L; Tomita H; Zinn M; Matsumoto K
    Microb Cell Fact; 2022 May; 21(1):84. PubMed ID: 35568875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioconversion of glycerol into polyhydroxyalkanoates through an atypical metabolism shift using Priestia megaterium during fermentation processes: A statistical analysis of carbon and nitrogen source concentrations.
    Shahid S; Mosrati R; Corroler D; Amiel C; Gaillard JL
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128116. PubMed ID: 37979765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of nitrogen source supply for enhanced biosynthesis and quality of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by extremely halophilic archaeon Haloferax mediterranei.
    Alsafadi D; Al-Mashaqbeh O; Mansour A; Alsaad M
    Microbiologyopen; 2020 Aug; 9(8):e1055. PubMed ID: 32410392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering Burkholderia sacchari to enhance poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] production from xylose and hexanoate.
    Oliveira-Filho ER; de Macedo MA; Lemos ACC; Adams F; Merkel OM; Taciro MK; Gomez JGC; Silva LF
    Int J Biol Macromol; 2022 Jul; 213():902-914. PubMed ID: 35690163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440.
    Le Meur S; Zinn M; Egli T; Thöny-Meyer L; Ren Q
    BMC Biotechnol; 2012 Aug; 12():53. PubMed ID: 22913372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid.
    Cha D; Ha HS; Lee SK
    Bioresour Technol; 2020 Aug; 309():123332. PubMed ID: 32305015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.