These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37390928)

  • 1. Synergistic effect of zero-valent iron and static magnetic field on wastewater purification and bioelectricity generation in electroactive constructed wetlands.
    Kong Q; Shi Q; Guo W; Qi X; Zhao Z; Qin M
    Bioresour Technol; 2023 Oct; 385():129417. PubMed ID: 37390928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance optimization and microbial community evaluation for domestic wastewater treatment in a constructed wetland-microbial fuel cell.
    Yang H; Chen J; Yu L; Li W; Huang X; Qin Q; Zhu S
    Environ Res; 2022 Sep; 212(Pt B):113249. PubMed ID: 35421392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on the contribution of electron flow in electroactive wetlands: Electricity generation and enhanced wastewater treatment.
    Srivastava P; Abbassi R; Yadav AK; Garaniya V; Asadnia M
    Chemosphere; 2020 Sep; 254():126926. PubMed ID: 32957303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation.
    Oon YL; Ong SA; Ho LN; Wong YS; Oon YS; Lehl HK; Thung WE
    Bioresour Technol; 2015 Jun; 186():270-275. PubMed ID: 25836035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic effect of up-flow constructed wetland and microbial fuel cell for simultaneous wastewater treatment and energy recovery.
    Oon YL; Ong SA; Ho LN; Wong YS; Dahalan FA; Oon YS; Lehl HK; Thung WE
    Bioresour Technol; 2016 Mar; 203():190-7. PubMed ID: 26724550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative constructed wetland coupled with microbial fuel cell for enhancing diazo dye degradation with simultaneous electricity generation.
    Saket P; Mittal Y; Bala K; Joshi A; Kumar Yadav A
    Bioresour Technol; 2022 Feb; 345():126490. PubMed ID: 34875373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constructed wetland-microbial fuel cells enhanced with iron carbon fillers for ciprofloxacin wastewater treatment and power generation.
    Dai M; Wu Y; Wang J; Lv Z; Li F; Zhang Y; Kong Q
    Chemosphere; 2022 Oct; 305():135377. PubMed ID: 35738411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater.
    Xu F; Ouyang DL; Rene ER; Ng HY; Guo LL; Zhu YJ; Zhou LL; Yuan Q; Miao MS; Wang Q; Kong Q
    Bioresour Technol; 2019 Sep; 288():121462. PubMed ID: 31128542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of three constructed wetland-microbial fuel cell systems: wastewater treatment efficiency and electricity generation potential.
    Htet Htet H; Dolphen R; Jirasereeamornkul K; Thiravetyan P
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96163-96180. PubMed ID: 37566335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An algal assisted constructed wetland-microbial fuel cell integrated with sand filter for efficient wastewater treatment and electricity production.
    Gupta S; Nayak A; Roy C; Yadav AK
    Chemosphere; 2021 Jan; 263():128132. PubMed ID: 33297120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectricity generation, contaminant removal and bacterial community distribution as affected by substrate material size and aquatic macrophyte in constructed wetland-microbial fuel cell.
    Wang J; Song X; Wang Y; Bai J; Bai H; Yan D; Cao Y; Li Y; Yu Z; Dong G
    Bioresour Technol; 2017 Dec; 245(Pt A):372-378. PubMed ID: 28898833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioelectricity generation from air-cathode microbial fuel cell connected to constructed wetland.
    Yan D; Song X; Weng B; Yu Z; Bi W; Wang J
    Water Sci Technol; 2018 Dec; 78(9):1990-1996. PubMed ID: 30566102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denitrification performance, bioelectricity generation and microbial response in microbial fuel cell - constructed wetland treating carbon constraint wastewater.
    Tao M; Kong Y; Jing Z; Jia Q; Tao Z; Li YY
    Bioresour Technol; 2022 Nov; 363():127902. PubMed ID: 36075346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electrode gap and wastewater condition on the performance of microbial fuel cell coupled constructed wetland.
    Fang Z; Cheng S; Cao X; Wang H; Li X
    Environ Technol; 2017 Apr; 38(8):1051-1060. PubMed ID: 27499283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of plant radial oxygen loss in constructed wetland combined with microbial fuel cell on nitrobenzene removal from aqueous solution.
    Di L; Li Y; Nie L; Wang S; Kong F
    J Hazard Mater; 2020 Jul; 394():122542. PubMed ID: 32240899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell.
    Ge X; Cao X; Song X; Wang Y; Si Z; Zhao Y; Wang W; Tesfahunegn AA
    Bioresour Technol; 2020 Jan; 296():122350. PubMed ID: 31744666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrelation between sulphur and conductive materials and its impact on ammonium and organic pollutants removal in electroactive wetlands.
    Srivastava P; Abbassi R; Yadav AK; Garaniya V; Lewis T; Zhao Y; Aminabhavi T
    J Hazard Mater; 2021 Oct; 419():126417. PubMed ID: 34174621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced nickel removal and synchronous bioelectricity generation based on substrate types in microbial fuel cell coupled with constructed wetland: performance and microbial response.
    Cheng Z; Xu D; Zhang Q; Tao Z; Hong R; Chen Y; Tang X; Zeng S; Wang S
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):19725-19736. PubMed ID: 36239892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of microbial fuel cell (MFC) for bioelectricity generation and pollutants removal from sugar beet processing wastewater (SBPW).
    Rahman A; Borhan MS; Rahman S
    Water Sci Technol; 2018 Jan; 77(1-2):387-397. PubMed ID: 29377823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the field of constructed wetland-microbial fuel cell: A review and bibliometric analysis.
    Ji B; Zhao Y; Vymazal J; Mander Ü; Lust R; Tang C
    Chemosphere; 2021 Jan; 262():128366. PubMed ID: 33182086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.