BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 37391545)

  • 1. Long-term impact of myocardial inflammation on quantitative myocardial perfusion-a descriptive PET/MR myocarditis study.
    Buechel RR; Ciancone D; Bakula A; von Felten E; Schmidt GA; Patriki D; Gräni C; Wahl A; Manka R; Heidecker B; Benz DC; Giannopoulos AA; Pazhenkottil AP; Kaufmann PA
    Eur J Nucl Med Mol Imaging; 2023 Oct; 50(12):3609-3618. PubMed ID: 37391545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between quantitative cardiac magnetic resonance perfusion imaging and [
    Everaars H; van Diemen PA; Bom MJ; Schumacher SP; de Winter RW; van de Ven PM; Raijmakers PG; Lammertsma AA; Hofman MBM; van der Geest RJ; Götte MJ; van Rossum AC; Nijveldt R; Danad I; Driessen RS; Knaapen P
    Eur J Nucl Med Mol Imaging; 2020 Jul; 47(7):1688-1697. PubMed ID: 31822958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Splenic switch-off as a predictor for coronary adenosine response: validation against 13N-ammonia during co-injection myocardial perfusion imaging on a hybrid PET/CMR scanner.
    Patriki D; von Felten E; Bakula A; Giannopoulos AA; Kamani CH; Schwyzer M; Messerli M; Benz DC; Gebhard C; Gräni C; Pazhenkottil AP; Kaufmann PA; Fuchs TA; Buechel RR
    J Cardiovasc Magn Reson; 2021 Jan; 23(1):3. PubMed ID: 33407586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute Myocardial Blood Flow and Flow Reserve Assessed by Gated SPECT with Cadmium-Zinc-Telluride Detectors Using 99mTc-Tetrofosmin: Head-to-Head Comparison with 13N-Ammonia PET.
    Nkoulou R; Fuchs TA; Pazhenkottil AP; Kuest SM; Ghadri JR; Stehli J; Fiechter M; Herzog BA; Gaemperli O; Buechel RR; Kaufmann PA
    J Nucl Med; 2016 Dec; 57(12):1887-1892. PubMed ID: 27363834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between cardiac magnetic resonance stress T1 mapping and [15O]H2O positron emission tomography in patients with suspected obstructive coronary artery disease.
    Everaars H; van Diemen PA; Biesbroek PS; Hopman LHGA; Bom MJ; Schumacher SP; de Winter RW; van de Ven PM; Raijmakers PG; Lammertsma AA; Hofman MBM; Nijveldt R; Götte MJ; van Rossum AC; Danad I; Driessen RS; Knaapen P
    Eur Heart J Cardiovasc Imaging; 2022 Jan; 23(2):229-237. PubMed ID: 33982071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splenic switch-off as a novel marker for adenosine response in nitrogen-13 ammonia PET myocardial perfusion imaging: Cross-validation against CMR using a hybrid PET/MR device.
    Bakula A; Patriki D; von Felten E; Benetos G; Sustar A; Benz DC; Wiedemann-Buser M; Treyer V; Pazhenkottil AP; Gräni C; Gebhard C; Kaufmann PA; Buechel RR; Fuchs TA
    J Nucl Cardiol; 2022 Jun; 29(3):1205-1214. PubMed ID: 33354759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated Myocardial Perfusion Imaging Diagnostics Improve Detection of Functionally Significant Coronary Artery Stenosis by 13N-ammonia Positron Emission Tomography.
    Lee JM; Kim CH; Koo BK; Hwang D; Park J; Zhang J; Tong Y; Jeon KH; Bang JI; Suh M; Paeng JC; Cheon GJ; Na SH; Ahn JM; Park SJ; Kim HS
    Circ Cardiovasc Imaging; 2016 Sep; 9(9):. PubMed ID: 27609817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simplified quantification of
    Chang CY; Hung GU; Hsu B; Yang BH; Chang CW; Hu LH; Huang WS; Wang HE; Wu TC; Liu RS
    J Nucl Cardiol; 2020 Jun; 27(3):819-828. PubMed ID: 30324328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of time-of-flight on qualitative and quantitative analyses of myocardial perfusion PET studies using (13)N-ammonia.
    Tomiyama T; Ishihara K; Suda M; Kanaya K; Sakurai M; Takahashi N; Takano H; Nitta K; Hakozaki K; Kumita S
    J Nucl Cardiol; 2015 Oct; 22(5):998-1007. PubMed ID: 25467250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with
    Hsu B; Hu LH; Yang BH; Chen LC; Chen YK; Ting CH; Hung GU; Huang WS; Wu TC
    Eur J Nucl Med Mol Imaging; 2017 Jan; 44(1):117-128. PubMed ID: 27585576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial Blood Flow and Inflammatory Cardiac Sarcoidosis.
    Kruse MJ; Kovell L; Kasper EK; Pomper MG; Moller DR; Solnes L; Chen ES; Schindler TH
    JACC Cardiovasc Imaging; 2017 Feb; 10(2):157-167. PubMed ID: 28109920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified method to correct saturation of arterial input function for cardiac magnetic resonance first-pass perfusion imaging: validation with simultaneously acquired PET.
    Li R; Edalati M; Muccigrosso D; Lau JMC; Laforest R; Woodard PK; Zheng J
    J Cardiovasc Magn Reson; 2023 Jun; 25(1):35. PubMed ID: 37344848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic value of global myocardial perfusion reserve assessment based on coronary sinus flow measurements using cardiovascular magnetic resonance in addition to myocardial stress perfusion imaging.
    Shomanova Z; Florian A; Bietenbeck M; Waltenberger J; Sechtem U; Yilmaz A
    Eur Heart J Cardiovasc Imaging; 2017 May; 18(8):851-859. PubMed ID: 28369259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myocardial bridging of the left anterior descending coronary artery is associated with reduced myocardial perfusion reserve: a
    Monroy-Gonzalez AG; Alexanderson-Rosas E; Prakken NHJ; Juarez-Orozco LE; Walls-Laguarda L; Berrios-Barcenas EA; Meave-Gonzalez A; Groot JC; Slart RHJA; Tio RA
    Int J Cardiovasc Imaging; 2019 Feb; 35(2):375-382. PubMed ID: 30267168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patients with reduced heart rate response to adenosine infusion have low myocardial flow reserve in (13)N-ammonia PET studies.
    Tomiyama T; Kumita S; Ishihara K; Suda M; Sakurai M; Hakozaki K; Hashimoto H; Takahashi N; Takano H; Kobayashi Y; Kiriyama T; Fukushima Y; Shimizu W
    Int J Cardiovasc Imaging; 2015 Jun; 31(5):1089-95. PubMed ID: 25846547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of quantitative myocardial blood flow and
    Benz DC; Ferro P; Safa N; Messerli M; von Felten E; Huang W; Patriki D; Giannopoulos AA; Fuchs TA; Gräni C; Gebhard C; Pazhenkottil AP; Kaufmann PA; Buechel RR
    J Nucl Cardiol; 2021 Feb; 28(1):263-273. PubMed ID: 30895563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT.
    Slomka PJ; Alexanderson E; Jácome R; Jiménez M; Romero E; Meave A; Le Meunier L; Dalhbom M; Berman DS; Germano G; Schelbert H
    J Nucl Med; 2012 Feb; 53(2):171-81. PubMed ID: 22228795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiomics for the detection of diffusely impaired myocardial perfusion: A proof-of-concept study using 13N-ammonia positron emission tomography.
    Degtiarova G; Garefa C; Boehm R; Ciancone D; Sepulcri D; Gebhard C; Giannopoulos AA; Pazhenkottil AP; Kaufmann PA; Buechel RR
    J Nucl Cardiol; 2023 Aug; 30(4):1474-1483. PubMed ID: 36600174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducibility of Left Ventricular Function Derived From Cardiac Magnetic Resonance and Gated 13N-Ammonia Positron Emission Tomography Myocardial Perfusion Imaging: A Head-to-Head Comparison Using Hybrid Positron Emission Tomography/Magnetic Resonance.
    Sager DF; Manz N; Manser S; Laubscher L; Stark AW; Schütze J; Heiniger PS; Markendorf S; Kaufmann PA; Gräni C; Buechel RR
    Acad Radiol; 2024 Apr; 31(4):1248-1255. PubMed ID: 37940426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of myocardial flow reserve prediction without the use of dynamic data from myocardial perfusion positron emission tomography.
    Hashimoto H; Fukushima Y; Kumita SI; Tomiyama T; Kiriyama T
    Int J Cardiovasc Imaging; 2018 Aug; 34(8):1323-1329. PubMed ID: 29556942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.