These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 37391825)
1. Characterization of the circulating transcriptome expression profile and identification of novel miRNA biomarkers in hypertrophic cardiomyopathy. Guo L; Cai Y; Wang B; Zhang F; Zhao H; Liu L; Tao L Eur J Med Res; 2023 Jun; 28(1):205. PubMed ID: 37391825 [TBL] [Abstract][Full Text] [Related]
2. Susceptibility Modules and Genes in Hypertrophic Cardiomyopathy by WGCNA and ceRNA Network Analysis. Sun Y; Xiao Z; Chen Y; Xu D; Chen S Front Cell Dev Biol; 2021; 9():822465. PubMed ID: 35178407 [No Abstract] [Full Text] [Related]
3. SNHG 12 and hsa-miR-140-5P may play an important role in the ceRNA network related to hypertrophic cardiomyopathy. Zhai J; Guo F; Zhou X; Zhu K; Li J; Wang C J Thorac Dis; 2023 Mar; 15(3):1353-1363. PubMed ID: 37065602 [TBL] [Abstract][Full Text] [Related]
4. Identification of Serum Exosome-Derived circRNA-miRNA-TF-mRNA Regulatory Network in Postmenopausal Osteoporosis Using Bioinformatics Analysis and Validation in Peripheral Blood-Derived Mononuclear Cells. Dong Q; Han Z; Tian L Front Endocrinol (Lausanne); 2022; 13():899503. PubMed ID: 35757392 [TBL] [Abstract][Full Text] [Related]
5. lncRNA ADAMTS9-AS1/circFN1 Competitively Binds to miR-206 to Elevate the Expression of ACTB, Thus Inducing Hypertrophic Cardiomyopathy. Feng W; Han S Oxid Med Cell Longev; 2022; 2022():1450610. PubMed ID: 35401927 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive Construction of a Circular RNA-Associated Competing Endogenous RNA Network Identified Novel Circular RNAs in Hypertrophic Cardiomyopathy by Integrated Analysis. Guo Q; Wang J; Sun R; He Z; Chen Q; Liu W; Wu M; Bao J; Liu Z; Wang J; Zhang Y Front Genet; 2020; 11():764. PubMed ID: 32849787 [TBL] [Abstract][Full Text] [Related]
7. Identification of circRNA-miRNA-mRNA regulatory network and its role in cardiac hypertrophy. Gong K; Yang K; Xie T; Luo Y; Guo H; Tan Z; Chen J; Wu Q; Gong Y; Wei L; Luo J; Yao Y; Yang Y; Xie L PLoS One; 2023; 18(3):e0279638. PubMed ID: 36952519 [TBL] [Abstract][Full Text] [Related]
8. Identification of circulating hub long noncoding RNAs associated with hypertrophic cardiomyopathy using weighted correlation network analysis. Guo Q; Wang J; Sun R; Gu W; He Z; Chen Q; Liu W; Chen Y; Wang J; Zhang Y Mol Med Rep; 2020 Dec; 22(6):4637-4644. PubMed ID: 33174017 [TBL] [Abstract][Full Text] [Related]
9. Identification of characteristic genes and construction of regulatory network in gallbladder carcinoma. Shao H; Zhu J; Zhu Y; Liu L; Zhao S; Kang Q; Liu Y; Zou H BMC Med Genomics; 2023 Oct; 16(1):240. PubMed ID: 37821907 [TBL] [Abstract][Full Text] [Related]
10. Reconstruction and analysis of potential biomarkers for hypertrophic cardiomyopathy based on a competing endogenous RNA network. Chen JY; Xie ZX; Dai JZ; Han JY; Wang K; Lu LH; Jin JJ; Xue SJ BMC Cardiovasc Disord; 2022 Sep; 22(1):422. PubMed ID: 36138345 [TBL] [Abstract][Full Text] [Related]
11. Weighted gene co-expression network analysis revealed key biomarkers associated with the diagnosis of hypertrophic cardiomyopathy. Li X; Wang C; Zhang X; Liu J; Wang Y; Li C; Guo D Hereditas; 2020 Oct; 157(1):42. PubMed ID: 33099311 [TBL] [Abstract][Full Text] [Related]
12. Integrated Analysis of Circular RNA-Associated ceRNA Network Reveals Potential circRNA Biomarkers in Human Breast Cancer. Sheng H; Pan H; Yao M; Xu L; Lu J; Liu B; Shen J; Shen H Comput Math Methods Med; 2021; 2021():1732176. PubMed ID: 34966440 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic Analyses and Experimental Validation Identified Immune-Related lncRNA-mRNA Pair Zhang Y; Zhao J; Jin Q; Zhuang L Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38474063 [TBL] [Abstract][Full Text] [Related]
14. Identification of a miRNA-mRNA regulatory network for post-stroke depression: a machine-learning approach. Qiu H; Shen L; Shen Y; Mao Y Front Neurol; 2023; 14():1096911. PubMed ID: 37528851 [TBL] [Abstract][Full Text] [Related]
15. Osteomodulin is a Potential Genetic Target for Hypertrophic Cardiomyopathy. Guo W; Feng W; Fan X; Huang J; Ou C; Chen M Biochem Genet; 2021 Oct; 59(5):1185-1202. PubMed ID: 33715137 [TBL] [Abstract][Full Text] [Related]
16. MicroRNAs as Biomarkers in Hypertrophic Cardiomyopathy: Current State of the Art. Angelopoulos A; Oikonomou E; Vogiatzi G; Antonopoulos A; Tsalamandris S; Georgakopoulos C; Papanikolaou P; Lazaros G; Charalambous G; Siasos G; Vlachopoulos C; Tousoulis D Curr Med Chem; 2021; 28(36):7400-7412. PubMed ID: 33820510 [TBL] [Abstract][Full Text] [Related]
17. A LncRNA-miRNA-mRNA ceRNA regulatory network based tuberculosis prediction model. Feng J; Bian Q; He X; Zhang H; He J Microb Pathog; 2021 Sep; 158():105069. PubMed ID: 34175436 [TBL] [Abstract][Full Text] [Related]
18. Identification and verification of promising diagnostic biomarkers in patients with hypertrophic cardiomyopathy associate with immune cell infiltration characteristics. Zheng X; Yang Y; Huang Fu C; Huang R Life Sci; 2021 Nov; 285():119956. PubMed ID: 34520765 [TBL] [Abstract][Full Text] [Related]
19. Identification of Potential miRNA-mRNA Regulatory Network Contributing to Hypertrophic Cardiomyopathy (HCM). Wang L; Lu F; Xu J Front Cardiovasc Med; 2021; 8():660372. PubMed ID: 34136543 [No Abstract] [Full Text] [Related]
20. Identification of key genes for hypertrophic cardiomyopathy using integrated network analysis of differential lncRNA and gene expression. Cao J; Yuan L Front Cardiovasc Med; 2022; 9():946229. PubMed ID: 35990977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]