These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37391851)

  • 41. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
    Hsiao H; Awad LN; Palmer JA; Higginson JS; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Sep; 30(8):743-52. PubMed ID: 26721869
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of walking with loads above the ankle on gait parameters of persons with hemiparesis after stroke.
    Duclos C; Nadeau S; Bourgeois N; Bouyer L; Richards CL
    Clin Biomech (Bristol, Avon); 2014 Mar; 29(3):265-71. PubMed ID: 24405568
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Paretic propulsion changes with handrail Use in individuals post-stroke.
    Hinton EH; Bierner S; Reisman DS; Likens A; Knarr BA
    Heliyon; 2024 Mar; 10(5):e26924. PubMed ID: 38463863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The influence of backward versus forward locomotor training on gait speed and balance control post-stroke: Recovery or compensation?
    Bansal K; Vistamehr A; Conroy CL; Fox EJ; Rose DK
    J Biomech; 2023 Jun; 155():111644. PubMed ID: 37229888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The kinematics of paretic lower limb in aquatic gait with equipment in people with post-stroke hemiparesis.
    Pereira JA; de Souza KK; Pereira SM; Ruschel C; Hubert M; Michaelsen SM
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():16-22. PubMed ID: 31382199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fore-aft resistance applied at the center of mass using a novel robotic interface proportionately increases propulsive force generation in healthy nonimpaired individuals walking at a constant speed.
    Naidu A; Graham SA; Brown DA
    J Neuroeng Rehabil; 2019 Sep; 16(1):111. PubMed ID: 31492156
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke.
    Palmer JA; Hsiao H; Awad LN; Binder-Macleod SA
    Clin Neurophysiol; 2016 Mar; 127(3):1837-44. PubMed ID: 26724913
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Slow Walking in Individuals with Chronic Post-Stroke Hemiparesis: Speed Mediated Effects of Gait Kinetics and Ankle Kinematics.
    Liang JN; Ho KY; Lee YJ; Ackley C; Aki K; Arias J; Trinh J
    Brain Sci; 2021 Mar; 11(3):. PubMed ID: 33805603
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differences in self-selected and fastest-comfortable walking in post-stroke hemiparetic persons.
    Beaman CB; Peterson CL; Neptune RR; Kautz SA
    Gait Posture; 2010 Mar; 31(3):311-6. PubMed ID: 20006505
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real-Time Visual Kinematic Feedback During Overground Walking Improves Gait Biomechanics in Individuals Post-Stroke.
    Hinton EH; Buffum R; Kingston D; Stergiou N; Kesar T; Bierner S; Knarr BA
    Ann Biomed Eng; 2024 Feb; 52(2):355-363. PubMed ID: 37870663
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Linking gait mechanics with perceived quality of life and participation after stroke.
    Rowland DM; Lewek MD
    PLoS One; 2022; 17(9):e0274511. PubMed ID: 36129881
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of plantarflexion resistance of an ankle-foot orthosis on ankle and knee joint power during gait in individuals post-stroke.
    Kobayashi T; Orendurff MS; Singer ML; Gao F; Hunt G; Foreman KB
    J Biomech; 2018 Jun; 75():176-180. PubMed ID: 29764676
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of body-weight supported treadmill training on kinetic symmetry in persons with chronic stroke.
    Combs SA; Dugan EL; Ozimek EN; Curtis AB
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):887-92. PubMed ID: 22809736
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional electrical stimulation of ankle plantarflexor and dorsiflexor muscles: effects on poststroke gait.
    Kesar TM; Perumal R; Reisman DS; Jancosko A; Rudolph KS; Higginson JS; Binder-Macleod SA
    Stroke; 2009 Dec; 40(12):3821-7. PubMed ID: 19834018
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of robotic-assisted ankle training on gait in stroke participants: A case series study.
    Varas-Diaz G; Cordo P; Dusane S; Bhatt T
    Physiother Theory Pract; 2022 Nov; 38(13):2973-2982. PubMed ID: 34424126
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of an articulated ankle-foot orthosis with resistance-adjustable joints on lower limb joint kinematics and kinetics during gait in individuals post-stroke.
    Kobayashi T; Orendurff MS; Hunt G; Gao F; LeCursi N; Lincoln LS; Foreman KB
    Clin Biomech (Bristol, Avon); 2018 Nov; 59():47-55. PubMed ID: 30145413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of the human-exosuit interaction using ankle moment and ankle positive power inspired walking assistance.
    Grimmer M; Quinlivan BT; Lee S; Malcolm P; Rossi DM; Siviy C; Walsh CJ
    J Biomech; 2019 Jan; 83():76-84. PubMed ID: 30514626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of power training on rate of torque development and spatiotemporal gait parameters post stroke.
    Williams ER; VanDerwerker CJ; Ross RE; Evans EM; Gregory CM
    Clin Biomech (Bristol, Avon); 2023 May; 105():105953. PubMed ID: 37075545
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancing Neuroplasticity in the Chronic Phase After Stroke: Effects of a Soft Robotic Exosuit on Training Intensity and Brain-Derived Neurotrophic Factor.
    Cataldo AVR; Collimore AN; Spangler J; Ribeirinha-Braga L; Hutchinson K; Wang QM; Thompson L; Awad LN
    IEEE Open J Eng Med Biol; 2023; 4():284-291. PubMed ID: 38196979
    [No Abstract]   [Full Text] [Related]  

  • 60. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit.
    Quinlivan BT; Lee S; Malcolm P; Rossi DM; Grimmer M; Siviy C; Karavas N; Wagner D; Asbeck A; Galiana I; Walsh CJ
    Sci Robot; 2017 Jan; 2(2):. PubMed ID: 33157865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.