These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 37391851)

  • 61. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit.
    Quinlivan BT; Lee S; Malcolm P; Rossi DM; Grimmer M; Siviy C; Karavas N; Wagner D; Asbeck A; Galiana I; Walsh CJ
    Sci Robot; 2017 Jan; 2(2):. PubMed ID: 33157865
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of power training on rate of torque development and spatiotemporal gait parameters post stroke.
    Williams ER; VanDerwerker CJ; Ross RE; Evans EM; Gregory CM
    Clin Biomech (Bristol, Avon); 2023 May; 105():105953. PubMed ID: 37075545
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhancing Neuroplasticity in the Chronic Phase After Stroke: Effects of a Soft Robotic Exosuit on Training Intensity and Brain-Derived Neurotrophic Factor.
    Cataldo AVR; Collimore AN; Spangler J; Ribeirinha-Braga L; Hutchinson K; Wang QM; Thompson L; Awad LN
    IEEE Open J Eng Med Biol; 2023; 4():284-291. PubMed ID: 38196979
    [No Abstract]   [Full Text] [Related]  

  • 64. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.
    Noel M; Fortin K; Bouyer LJ
    J Neuroeng Rehabil; 2009 Jun; 6():16. PubMed ID: 19493356
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Joint moment work during the stance-to-swing transition in hemiparetic subjects.
    Chen G; Patten C
    J Biomech; 2008; 41(4):877-83. PubMed ID: 18067898
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of soft robotic exosuit on ambulation ability in stroke patients: a systematic review.
    Chuang YC; Tsai YL; Lin TT; Ou-Yang LJ; Lee YC; Cheng YY; Liu CC; Hsu CS
    Biomed Eng Online; 2023 Sep; 22(1):88. PubMed ID: 37670316
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Control of lateral weight transfer is associated with walking speed in individuals post-stroke.
    Hsiao H; Gray VL; Creath RA; Binder-Macleod SA; Rogers MW
    J Biomech; 2017 Jul; 60():72-78. PubMed ID: 28687151
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparison of the Immediate Effects of Audio, Visual, or Audiovisual Gait Biofeedback on Propulsive Force Generation in Able-Bodied and Post-stroke Individuals.
    Liu J; Kim HB; Wolf SL; Kesar TM
    Appl Psychophysiol Biofeedback; 2020 Sep; 45(3):211-220. PubMed ID: 32347399
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Coordination of the non-paretic leg during hemiparetic gait: expected and novel compensatory patterns.
    Raja B; Neptune RR; Kautz SA
    Clin Biomech (Bristol, Avon); 2012 Dec; 27(10):1023-30. PubMed ID: 22981679
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Computational Design of FastFES Treatment to Improve Propulsive Force Symmetry During Post-stroke Gait: A Feasibility Study.
    Sauder NR; Meyer AJ; Allen JL; Ting LH; Kesar TM; Fregly BJ
    Front Neurorobot; 2019; 13():80. PubMed ID: 31632261
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Verbal feedback enhances motor learning during post-stroke gait retraining.
    Rendos NK; Zajac-Cox L; Thomas R; Sato S; Eicholtz S; Kesar TM
    Top Stroke Rehabil; 2021 Jul; 28(5):362-377. PubMed ID: 32942960
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Crouch gait can be an effective form of forced-use/no constraint exercise for the paretic lower limb in stroke.
    Tesio L; Rota V; Malloggi C; Brugliera L; Catino L
    Int J Rehabil Res; 2017 Sep; 40(3):254-267. PubMed ID: 28574860
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Targeting paretic propulsion to improve poststroke walking function: a preliminary study.
    Awad LN; Reisman DS; Kesar TM; Binder-Macleod SA
    Arch Phys Med Rehabil; 2014 May; 95(5):840-8. PubMed ID: 24378803
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke.
    Kobayashi T; Singer ML; Orendurff MS; Gao F; Daly WK; Foreman KB
    Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):775-80. PubMed ID: 26149007
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait.
    Kesar TM; Reisman DS; Perumal R; Jancosko AM; Higginson JS; Rudolph KS; Binder-Macleod SA
    Gait Posture; 2011 Feb; 33(2):309-13. PubMed ID: 21183351
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Combined user-driven treadmill control and functional electrical stimulation increases walking speeds poststroke.
    Ray NT; Reisman DS; Higginson JS
    J Biomech; 2021 Jul; 124():110480. PubMed ID: 34126560
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The impact of ankle-foot orthosis's plantarflexion resistance on knee adduction moment in people with chronic stroke.
    Kobayashi T; Hunt G; Orendurff MS; Gao F; Singer ML; Foreman KB
    Prosthet Orthot Int; 2022 Dec; 46(6):560-565. PubMed ID: 35532368
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reducing the energy cost of walking with low assistance levels through optimized hip flexion assistance from a soft exosuit.
    Kim J; Quinlivan BT; Deprey LA; Arumukhom Revi D; Eckert-Erdheim A; Murphy P; Orzel D; Walsh CJ
    Sci Rep; 2022 Jun; 12(1):11004. PubMed ID: 35768486
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of Varying Plantarflexion Stiffness of Ankle-Foot Orthosis on Achilles Tendon and Propulsion Force During Gait.
    Yamamoto M; Shimatani K; Hasegawa M; Kurita Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2194-2202. PubMed ID: 32866100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.