BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37392219)

  • 1. Ammonium sulfate supplementation enhances erythromycin biosynthesis by augmenting intracellular metabolism and precursor supply in Saccharopolyspora erythraea.
    Yuan Y; Xu F; Ke X; Lu J; Huang M; Chu J
    Bioprocess Biosyst Eng; 2023 Sep; 46(9):1303-1318. PubMed ID: 37392219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical parameters of Saccharopolyspora erythraea during feeding ammonium sulphate in erythromycin biosynthesis phase.
    Zou X; Li WJ; Zeng W; Hang HF; Chu J; Zhuang YP; Zhang SL
    Prikl Biokhim Mikrobiol; 2013; 49(2):190-6. PubMed ID: 23795479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing erythromycin production in Saccharopolyspora erythraea through rational engineering and fermentation refinement: A Design-Build-Test-Learn approach.
    Shao M; Xu F; Ke X; Huang M; Chu J
    Biotechnol J; 2024 May; 19(5):e2400039. PubMed ID: 38797723
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Hong M; Mou H; Liu X; Huang M; Chu J
    Bioprocess Biosyst Eng; 2017 Sep; 40(9):1337-1348. PubMed ID: 28567527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PccD Regulates Branched-Chain Amino Acid Degradation and Exerts a Negative Effect on Erythromycin Production in Saccharopolyspora erythraea.
    Xu Z; Liu Y; Ye BC
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cofactor Engineering Redirects Secondary Metabolism and Enhances Erythromycin Production in
    Li X; Chen J; Andersen JM; Chu J; Jensen PR
    ACS Synth Biol; 2020 Mar; 9(3):655-670. PubMed ID: 32078772
    [No Abstract]   [Full Text] [Related]  

  • 7. Application of oxygen uptake rate and response surface methodology for erythromycin production by Saccharopolyspora erythraea.
    Zou X; Hang HF; Chen CF; Chu J; Zhuang YP; Zhang SL
    J Ind Microbiol Biotechnol; 2008 Dec; 35(12):1637-42. PubMed ID: 18709395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of the Genome-Scale Metabolic Model of
    Xu F; Lu J; Ke X; Shao M; Huang M; Chu J
    Metabolites; 2022 Jun; 12(6):. PubMed ID: 35736442
    [No Abstract]   [Full Text] [Related]  

  • 9. Improvement of erythromycin production by Saccharopolyspora erythraea in molasses based medium through cultivation medium optimization.
    El-Enshasy HA; Mohamed NA; Farid MA; El-Diwany AI
    Bioresour Technol; 2008 Jul; 99(10):4263-8. PubMed ID: 17936622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significant decrease of broth viscosity and glucose consumption in erythromycin fermentation by dynamic regulation of ammonium sulfate and phosphate.
    Chen Y; Wang Z; Chu J; Zhuang Y; Zhang S; Yu X
    Bioresour Technol; 2013 Apr; 134():173-9. PubMed ID: 23500575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolomics for industrial fermentation.
    Choi KR; Kim WJ; Lee SY
    Bioprocess Biosyst Eng; 2018 Jul; 41(7):1073-1077. PubMed ID: 29931578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the metabolic fate of propanol in industrial erythromycin-producing strain via
    Xu F; Ke X; Hong M; Huang M; Chen C; Tian X; Hang H; Chu J
    Biochem Biophys Res Commun; 2021 Jan; 542():73-79. PubMed ID: 33497965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of proline on the central metabolism of an industrial erythromycin-producing strain Saccharopolyspora erythraea via (13)C labeling experiments.
    Hong M; Huang M; Chu J; Zhuang Y; Zhang S
    J Biotechnol; 2016 Aug; 231():1-8. PubMed ID: 27215341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated omics approaches provide strategies for rapid erythromycin yield increase in Saccharopolyspora erythraea.
    Karničar K; Drobnak I; Petek M; Magdevska V; Horvat J; Vidmar R; Baebler Š; Rotter A; Jamnik P; Fujs Š; Turk B; Fonovič M; Gruden K; Kosec G; Petković H
    Microb Cell Fact; 2016 Jun; 15():93. PubMed ID: 27255285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea.
    Kirm B; Magdevska V; Tome M; Horvat M; Karničar K; Petek M; Vidmar R; Baebler S; Jamnik P; Fujs Š; Horvat J; Fonovič M; Turk B; Gruden K; Petković H; Kosec G
    Microb Cell Fact; 2013 Dec; 12():126. PubMed ID: 24341557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea.
    Frykman S; Leaf T; Carreras C; Licari P
    Biotechnol Bioeng; 2001 Dec; 76(4):303-10. PubMed ID: 11745157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved erythromycin production in a genetically engineered industrial strain of Saccharopolyspora erythraea.
    Minas W; Brünker P; Kallio PT; Bailey JE
    Biotechnol Prog; 1998; 14(4):561-6. PubMed ID: 9694676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of the Saccharopolyspora erythraea genome-scale model and its use for enhancing erythromycin production.
    Licona-Cassani C; Marcellin E; Quek LE; Jacob S; Nielsen LK
    Antonie Van Leeuwenhoek; 2012 Oct; 102(3):493-502. PubMed ID: 22847261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glucose RQ-feedback control leading to improved erythromycin production by a recombinant strain Saccharopolyspora erythraea ZL1004 and its scale-up to 372-m(3) fermenter.
    Chen Y; Wang Z; Chu J; Xi B; Zhuang Y
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):105-12. PubMed ID: 25042891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the interaction of fermentation and microfiltration operations: erythromycin recovery from Saccharopolyspora erythraea fermentation broths.
    Davies JL; Baganz F; Ison AP; Lye GJ
    Biotechnol Bioeng; 2000 Aug; 69(4):429-39. PubMed ID: 10862681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.