These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37392295)

  • 1. Analysis of barriers to photovoltaic waste management to achieve net-zero goal of Canada.
    Romel M; Kabir G; Ng KTW
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):85772-85791. PubMed ID: 37392295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of photovoltaic waste generation in Canada using regression-based model.
    Romel M; Kabir G; Ng KTW
    Environ Sci Pollut Res Int; 2024 Feb; 31(6):8650-8665. PubMed ID: 38182949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An interpretive structural modeling (ISM) and decision-making trail and evaluation laboratory (DEMATEL) method approach for the analysis of barriers of waste recycling in India.
    Chauhan A; Singh A; Jharkharia S
    J Air Waste Manag Assoc; 2018 Feb; 68(2):100-110. PubMed ID: 28278038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of barriers in e-waste management in developing economy: an integrated multiple-criteria decision-making approach.
    Jangre J; Prasad K; Patel D
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72294-72308. PubMed ID: 35696062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards the circular economy: Analysis of barriers to implementation of Turkey's zero waste management using the fuzzy DEMATEL method.
    Ayçin E; Kayapinar Kaya S
    Waste Manag Res; 2021 Aug; 39(8):1078-1089. PubMed ID: 33588709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Healthcare waste management: an interpretive structural modeling approach.
    Thakur V; Anbanandam R
    Int J Health Care Qual Assur; 2016 Jun; 29(5):559-81. PubMed ID: 27256778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response to the Upcoming Emerging Waste: Necessity and Feasibility Analysis of Photovoltaic Waste Recovery in China.
    Lin M; Wu Y; Qin B; Cao W; Liu J; Xu Z; Ruan J
    Environ Sci Technol; 2022 Dec; 56(23):17396-17409. PubMed ID: 36354075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photovoltaic panel waste assessment and embodied material flows in China, 2000-2050.
    Song G; Lu Y; Liu B; Duan H; Feng H; Liu G
    J Environ Manage; 2023 Jul; 338():117675. PubMed ID: 36989951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-Waste Hybrid Composites with Waste Silicon Photovoltaic Module.
    Cosnita M; Manciulea I; Cazan C
    Polymers (Basel); 2019 Dec; 12(1):. PubMed ID: 31906214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the barriers to sustainable solid waste management in society 5.0 under uncertainties: a novelty of socials and technical perspectives on performance driving.
    Bui TD; Tseng ML
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):16265-16293. PubMed ID: 34648164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. System tradeoffs in siting a solar photovoltaic material recovery infrastructure.
    Goe M; Gaustad G; Tomaszewski B
    J Environ Manage; 2015 Sep; 160():154-66. PubMed ID: 26144560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of photovoltaic waste spatio-temporal distribution by 2060 in the context of carbon neutrality.
    Liu C; Zhang Q; Liu L
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):34840-34855. PubMed ID: 36522572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive review of the global trends and future perspectives for recycling of decommissioned photovoltaic panels.
    Akram Cheema H; Ilyas S; Kang H; Kim H
    Waste Manag; 2024 Feb; 174():187-202. PubMed ID: 38056367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A holistic reverse logistics planning framework for end-of-life PV panel collection system design.
    Molano JC; Xing K; Majewski P; Huang B
    J Environ Manage; 2022 Sep; 317():115331. PubMed ID: 35636104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Industrial Internet of things-based solar photo voltaic cell waste management in next generation industries.
    Muthusamy PD; Velusamy G; Thandavan S; Govindasamy BR; Savarimuthu N
    Environ Sci Pollut Res Int; 2022 May; 29(24):35542-35556. PubMed ID: 35237911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental emissions influencing solar photovoltaic waste management in Australia: An optimised system network of waste collection facilities.
    Oteng D; Zuo J; Sharifi E
    J Environ Manage; 2022 Jul; 314():115007. PubMed ID: 35460983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current challenges and future perspectives of solar-PV cell waste in Bangladesh.
    Tasnim SS; Rahman MM; Hasan MM; Shammi M; Tareq SM
    Heliyon; 2022 Feb; 8(2):e08970. PubMed ID: 35243090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating critical barriers and pathways to implementation of e-waste formalization management systems in Ghana: a hybrid BWM and fuzzy TOPSIS approach.
    Chen D; Faibil D; Agyemang M
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):44561-44584. PubMed ID: 32772292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waste management barriers in developing country hospitals: Case study and AHP analysis.
    Delmonico DVG; Santos HHD; Pinheiro MA; de Castro R; de Souza RM
    Waste Manag Res; 2018 Jan; 36(1):48-58. PubMed ID: 29153036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse logistics network design for waste solar photovoltaic panels: A case study of New South Wales councils in Australia.
    Islam MT; Nizami MSH; Mahmoudi S; Huda N
    Waste Manag Res; 2021 Feb; 39(2):386-395. PubMed ID: 33023422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.