These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37392637)

  • 1. Highly automatic and universal approach for pure ion chromatogram construction from liquid chromatography-mass spectrometry data using deep learning.
    Liao Y; Tian M; Zhang H; Lu H; Jiang Y; Chen Y; Zhang Z
    J Chromatogr A; 2023 Aug; 1705():464172. PubMed ID: 37392637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pure Ion Chromatograms Combined with Advanced Machine Learning Methods Improve Accuracy of Discriminant Models in LC-MS-Based Untargeted Metabolomics.
    Tian M; Lin Z; Wang X; Yang J; Zhao W; Lu H; Zhang Z; Chen Y
    Molecules; 2021 May; 26(9):. PubMed ID: 34063107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KPIC2: An Effective Framework for Mass Spectrometry-Based Metabolomics Using Pure Ion Chromatograms.
    Ji H; Zeng F; Xu Y; Lu H; Zhang Z
    Anal Chem; 2017 Jul; 89(14):7631-7640. PubMed ID: 28621925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of XCMS parameters for LC-MS metabolomics: an assessment of automated versus manual tuning and its effect on the final results.
    Albóniga OE; González O; Alonso RM; Xu Y; Goodacre R
    Metabolomics; 2020 Jan; 16(1):14. PubMed ID: 31925557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EVA: Evaluation of Metabolic Feature Fidelity Using a Deep Learning Model Trained With Over 25000 Extracted Ion Chromatograms.
    Guo J; Shen S; Xing S; Chen Y; Chen F; Porter EM; Yu H; Huan T
    Anal Chem; 2021 Sep; 93(36):12181-12186. PubMed ID: 34455775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusion of Quality Evaluation Metrics and Convolutional Neural Network Representations for ROI Filtering in LC-MS.
    Zhang H; Xu Z; Fan X; Wang Y; Yang Q; Sun J; Wen M; Kang X; Zhang Z; Lu H
    Anal Chem; 2023 Jan; 95(2):612-620. PubMed ID: 36597722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-MSNet: a point cloud-based deep learning model for untargeted feature detection and quantification in profile LC-HRMS data.
    Wang R; Lu M; An S; Wang J; Yu C
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37071700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MET-COFEA: a liquid chromatography/mass spectrometry data processing platform for metabolite compound feature extraction and annotation.
    Zhang W; Chang J; Lei Z; Huhman D; Sumner LW; Zhao PX
    Anal Chem; 2014 Jul; 86(13):6245-53. PubMed ID: 24856452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paramounter: Direct Measurement of Universal Parameters To Process Metabolomics Data in a "White Box".
    Guo J; Shen S; Huan T
    Anal Chem; 2022 Mar; 94(10):4260-4268. PubMed ID: 35245044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detailed Investigation and Comparison of the XCMS and MZmine 2 Chromatogram Construction and Chromatographic Peak Detection Methods for Preprocessing Mass Spectrometry Metabolomics Data.
    Myers OD; Sumner SJ; Li S; Barnes S; Du X
    Anal Chem; 2017 Sep; 89(17):8689-8695. PubMed ID: 28752757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picky with peakpicking: assessing chromatographic peak quality with simple metrics in metabolomics.
    Kumler W; Hazelton BJ; Ingalls AE
    BMC Bioinformatics; 2023 Oct; 24(1):404. PubMed ID: 37891484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Understanding of the Discrepancies between Common Peak Picking Algorithms in Liquid Chromatography-Mass Spectrometry-Based Metabolomics.
    Guo J; Huan T
    Anal Chem; 2023 Apr; 95(14):5894-5902. PubMed ID: 36972195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quality evaluation of extracted ion chromatograms and chromatographic peaks in liquid chromatography/mass spectrometry-based metabolomics data.
    Zhang W; Zhao PX
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S5. PubMed ID: 25350128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing XCMS parameters for GC-MS metabolomics data processing: a case study.
    Dos Santos EKP; Canuto GAB
    Metabolomics; 2023 Mar; 19(4):26. PubMed ID: 36976375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data.
    Uppal K; Soltow QA; Strobel FH; Pittard WS; Gernert KM; Yu T; Jones DP
    BMC Bioinformatics; 2013 Jan; 14():15. PubMed ID: 23323971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IPO: a tool for automated optimization of XCMS parameters.
    Libiseller G; Dvorzak M; Kleb U; Gander E; Eisenberg T; Madeo F; Neumann S; Trausinger G; Sinner F; Pieber T; Magnes C
    BMC Bioinformatics; 2015 Apr; 16():118. PubMed ID: 25888443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic binning peak detection and assessment of various lipidomics liquid chromatography-mass spectrometry pre-processing platforms.
    Feng X; Zhang W; Kuipers F; Kema I; Barcaru A; Horvatovich P
    Anal Chim Acta; 2021 Aug; 1173():338674. PubMed ID: 34172146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. G-Aligner: a graph-based feature alignment method for untargeted LC-MS-based metabolomics.
    Wang R; Lu M; An S; Wang J; Yu C
    BMC Bioinformatics; 2023 Nov; 24(1):431. PubMed ID: 37964228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haystack, a web-based tool for metabolomics research.
    Grace SC; Embry S; Luo H
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S12. PubMed ID: 25350247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets.
    Hoffmann N; Keck M; Neuweger H; Wilhelm M; Högy P; Niehaus K; Stoye J
    BMC Bioinformatics; 2012 Aug; 13():214. PubMed ID: 22920415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.