These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37392966)

  • 1. New insight into the concentration-dependent removal of multiple antibiotics by Chlorella sorokiniana.
    Chu Y; Li S; Xie P; Chen X; Li X; Ho SH
    Bioresour Technol; 2023 Oct; 385():129409. PubMed ID: 37392966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and transcriptomic responses of
    Li Z; Li S; Li T; Gao X; Zhu L
    iScience; 2022 Jul; 25(7):104638. PubMed ID: 35800754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of sulfamethoxazole by microalgae: Removal efficiency, pathways, and mechanisms.
    Chu Y; Zhang C; Wang R; Chen X; Ren N; Ho SH
    Water Res; 2022 Aug; 221():118834. PubMed ID: 35839594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined toxicity of erythromycin and roxithromycin and their removal by Chlorella pyrenoidosa.
    Liu K; Li J; Zhou Y; Li W; Cheng H; Han J
    Ecotoxicol Environ Saf; 2023 Jun; 257():114929. PubMed ID: 37084660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azithromycin induces dual effects on microalgae: Roles of photosynthetic damage and oxidative stress.
    Mao Y; Yu Y; Ma Z; Li H; Yu W; Cao L; He Q
    Ecotoxicol Environ Saf; 2021 Oct; 222():112496. PubMed ID: 34243111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production.
    Chen CY; Kuo EW; Nagarajan D; Ho SH; Dong CD; Lee DJ; Chang JS
    Bioresour Technol; 2020 Apr; 302():122814. PubMed ID: 32004812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of growth and antioxidant responses of freshwater microalgae Chlorella sorokiniana and Scenedesmus dimorphus under exposure of moxifloxacin.
    Li Z; Gao X; Bao J; Li S; Wang X; Li Z; Zhu L
    Sci Total Environ; 2023 Feb; 858(Pt 1):159788. PubMed ID: 36309277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgae cultivation for antibiotic oxytetracycline wastewater treatment.
    Wu S; Zhang J; Xia A; Huang Y; Zhu X; Zhu X; Liao Q
    Environ Res; 2022 Nov; 214(Pt 1):113850. PubMed ID: 35817165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation.
    Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF
    J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capabilities and mechanisms of microalgae on nutrients and florfenicol removing from marine aquaculture wastewater.
    Qian Z; Na L; Bao-Long W; Tao Z; Peng-Fei M; Wei-Xiao Z; Sraboni NZ; Zheng M; Ying-Qi Z; Liu Y
    J Environ Manage; 2022 Oct; 320():115673. PubMed ID: 35940008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel two-stage process for the effective treatment of swine wastewater using Chlorella sorokiniana AK-1 based algal-bacterial consortium under semi-continuous operation.
    Chen CY; Kuan SP; Nagarajan D; Chen JH; Ariyadasa TU; Chang JS
    Bioresour Technol; 2022 Dec; 365():128119. PubMed ID: 36252751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the multi-targeted effects of free nitrous acid on the microalgae Chlorella sorokiniana in wastewater.
    Abbew AW; Qiu S; Amadu AA; Qasim MZ; Chen Z; Wu Z; Wang L; Ge S
    Bioresour Technol; 2022 Mar; 347():126389. PubMed ID: 34822980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of non-sterilized wastewater purification and high-level CO
    Qin Y; Wang XW; Lian J; Zhao QF; Jiang HB
    Sci Total Environ; 2023 May; 873():162442. PubMed ID: 36842589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae.
    Xie P; Chen C; Zhang C; Su G; Ren N; Ho SH
    Water Res; 2020 Apr; 172():115475. PubMed ID: 31972413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents.
    Asadi P; Rad HA; Qaderi F
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29473-29489. PubMed ID: 31396874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient coupling of sulfadiazine removal with microalgae lipid production in a membrane photobioreactor.
    Gao F; Zhou JL; Zhang YR; Vadiveloo A; Chen QG; Liu JZ; Yang Q; Ge YM
    Chemosphere; 2023 Mar; 316():137880. PubMed ID: 36649892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the key driving factors involved in cometabolism enhanced aerobic degradation of tetracycline in wastewater.
    Qi X; Xiong JQ; Zhao CY; Ru S
    Water Res; 2022 Nov; 226():119285. PubMed ID: 36323209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of wastewater characteristics on the removal of organic micropollutants by Chlorella sorokiniana.
    Wu K; Atasoy M; Zweers H; Rijnaarts H; Langenhoff A; Fernandes TV
    J Hazard Mater; 2023 Jul; 453():131451. PubMed ID: 37086668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-batch cultivation of Chlorella sorokiniana AK-1 with dual carriers for the effective treatment of full strength piggery wastewater treatment.
    Chen CY; Kuo EW; Nagarajan D; Dong CD; Lee DJ; Varjani S; Lam SS; Chang JS
    Bioresour Technol; 2021 Apr; 326():124773. PubMed ID: 33548816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring kinetics, removal mechanism and possible transformation products of tigecycline by Chlorella pyrenoidosa.
    Zhong X; Zhang X; Zhou T; Lv G; Zhao Q
    Sci Total Environ; 2022 Apr; 817():152988. PubMed ID: 35026238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.