These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37393363)

  • 1. Study on co-seismic ionospheric disturbance of Alaska earthquake on July 29, 2021 based on GPS TEC.
    Ruan Q; Yuan X; Liu H; Ge S
    Sci Rep; 2023 Jul; 13(1):10679. PubMed ID: 37393363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of possible ionospheric precursor caused by Papua New Guinea earthquake (Mw 7.5).
    Ulukavak M; Inyurt S
    Environ Monit Assess; 2020 Feb; 192(3):190. PubMed ID: 32078061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionospheric GNSS Imagery of Seismic Source: Possibilities, Difficulties, and Challenges.
    Astafyeva E; Shults K
    J Geophys Res Space Phys; 2019 Jan; 124(1):534-543. PubMed ID: 31008005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tsunami detection by GPS-derived ionospheric total electron content.
    Shrivastava MN; Maurya AK; Gonzalez G; Sunil PS; Gonzalez J; Salazar P; Aranguiz R
    Sci Rep; 2021 Jun; 11(1):12978. PubMed ID: 34155312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of GIM-TEC disturbances before M ≥ 6.0 inland earthquakes during 2003-2017.
    Zhu F; Jiang Y
    Sci Rep; 2020 Oct; 10(1):18038. PubMed ID: 33093593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Ionospheric view of the 2011 Tohoku-Oki earthquake seismic source: the first 60 seconds of the rupture.
    Bagiya MS; Thomas D; Astafyeva E; Bletery Q; Lognonné P; Ramesh DS
    Sci Rep; 2020 Mar; 10(1):5232. PubMed ID: 32251306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Method to Improve the Detection of Co-Seismic Ionospheric Disturbances using Sequential Measurement Combination.
    Kang S; Song J; Han D; Kim B; So H; Kim KJ; Kee C
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining spatio-temporal characteristics of coseismic travelling ionospheric disturbances (CTID) in near real-time.
    Maletckii B; Astafyeva E
    Sci Rep; 2021 Oct; 11(1):20783. PubMed ID: 34675366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Ionospheric Disturbances Caused by the 2018 Bering Sea Meteor Explosion Based on GPS Observations.
    Luo Y; Yao Y; Shan L
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithosphere atmosphere ionosphere coupling associated with the 2019 M
    Mehdi S; Shah M; Naqvi NA
    Environ Monit Assess; 2021 Jul; 193(8):501. PubMed ID: 34291335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration.
    Savastano G; Komjathy A; Verkhoglyadova O; Mazzoni A; Crespi M; Wei Y; Mannucci AJ
    Sci Rep; 2017 Apr; 7():46607. PubMed ID: 28429754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Middle-Scale Ionospheric Disturbances Observed by the Oblique-Incidence Ionosonde Detection Network in North China after the 2011 Tohoku Tsunamigenic Earthquake.
    Wang J; Chen G; Yu T; Deng Z; Yan X; Yang N
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33540670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revelation of early detection of co-seismic ionospheric perturbations in GPS-TEC from realistic modelling approach: Case study.
    Thomas D; Bagiya MS; Sunil PS; Rolland L; Sunil AS; Mikesell TD; Nayak S; Mangalampalli S; Ramesh DS
    Sci Rep; 2018 Aug; 8(1):12105. PubMed ID: 30108250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface waves magnitude estimation from ionospheric signature of Rayleigh waves measured by Doppler sounder and OTH radar.
    Occhipinti G; Aden-Antoniow F; Bablet A; Molinie JP; Farges T
    Sci Rep; 2018 Jan; 8(1):1555. PubMed ID: 29367666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of Spatial and Temporal Variations of Ionospheric Total Electron Content in Japan, during 2014-2019 and the 2016 Kumamoto Earthquake.
    Hu T; Yao Y; Kong J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33808646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Earthquake precursory detection using diurnal GPS-TEC and kriging interpolation maps: 12 May 2008, Mw7.9 Wenchuan case study.
    Thammaboribal P; Tripathi NK; Ninsawat S; Pal I
    MethodsX; 2022; 9():101617. PubMed ID: 35096532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the Impact of Non-Tectonic Forcing mechanisms on GNSS measured Coseismic Ionospheric Perturbations.
    Bagiya MS; Sunil AS; Rolland L; Nayak S; Ponraj M; Thomas D; Ramesh DS
    Sci Rep; 2019 Dec; 9(1):18640. PubMed ID: 31819071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionospheric anomalies related to the (M = 7.3), August 27, 2012, Puerto earthquake, (M = 6.8), August 30, 2012 Jan Mayen Island earthquake, and (M = 7.6), August 31, 2012, Philippines earthquake: two-dimensional principal component analysis.
    Lin JW
    ScientificWorldJournal; 2013; 2013():271513. PubMed ID: 23844386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General resource for ionospheric transient investigations (GRITI): An open-source code developed in support of the Dinsmore et al. (2021) results.
    Dinsmore R; Mathews JD; Urbina J
    MethodsX; 2021; 8():101456. PubMed ID: 34430337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone.
    Moreno M; Rosenau M; Oncken O
    Nature; 2010 Sep; 467(7312):198-202. PubMed ID: 20829792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.