BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 37393609)

  • 1. Isolation and profiling of viable tumor cells from human ex vivo glioblastoma cultures through single-cell transcriptomics.
    Zhang J; Straehle J; Joseph K; Neidert N; Behringer S; Göldner J; Vlachos A; Prinz M; Fung C; Beck J; Schnell O; Heiland DH; Ravi VM
    STAR Protoc; 2023 Sep; 4(3):102383. PubMed ID: 37393609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol to dissociate, process, and analyze the human lung tissue using single-cell RNA-seq.
    Quintanal-Villalonga Á; Chan JM; Masilionis I; Gao VR; Xie Y; Allaj V; Chow A; Poirier JT; Pe'er D; Rudin CM; Mazutis L
    STAR Protoc; 2022 Dec; 3(4):101776. PubMed ID: 36313536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of human cutaneous immune cells for single-cell RNA sequencing.
    Hailer AA; Wu D; El Kurdi A; Yuan M; Cho RJ; Cheng JB
    STAR Protoc; 2023 Apr; 4(2):102239. PubMed ID: 37120815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol to analyze antitumor immunity of orthotopic injection and spontaneous murine high-grade glioma models using flow cytometry and single-cell RNA sequencing.
    Park JH; Kim CW; Kim HJ; Kim HJ; Lee JH; Lee HK
    STAR Protoc; 2022 Sep; 3(3):101607. PubMed ID: 35990740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation of microdissected mouse brain tissue for artifact free single-cell RNA sequencing.
    Liu L; Besson-Girard S; Ji H; Gehring K; Bulut B; Kaya T; Usifo F; Simons M; Gokce O
    STAR Protoc; 2021 Jun; 2(2):100590. PubMed ID: 34159323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collection of cells for single-cell RNA sequencing using high-resolution fluorescence microscopy.
    Segeren HA; Andree KC; Oomens L; Westendorp B
    STAR Protoc; 2021 Sep; 2(3):100718. PubMed ID: 34401784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol to obtain high-quality single-cell RNA-sequencing data from mouse liver cells using centrifugation.
    Wang S
    STAR Protoc; 2022 Dec; 3(4):101824. PubMed ID: 36386875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing and cryopreservation of human ureter tissues for single-cell and spatial transcriptomics assays.
    Fink EE; Sona S; Lee BH; Ting AH
    STAR Protoc; 2022 Dec; 3(4):101854. PubMed ID: 36595885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of myeloid cells from mouse brain tumors for single-cell RNA-seq analysis.
    Dang MT; Mafra F; Haldar M
    STAR Protoc; 2021 Dec; 2(4):100957. PubMed ID: 34825218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for isolating amnion cells from human and non-human primate placenta for flow cytometry and transcriptomics.
    Cappelletti M; Short D; Morselli M; Pellegrini M; Johnson MR; Afshar Y; Kallapur SG; Presicce P
    STAR Protoc; 2024 Jun; 5(2):103044. PubMed ID: 38678572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-staining human PBMCs with fluorescent antibodies and antibody-oligonucleotide conjugates for cell sorting prior to single-cell CITE-Seq.
    Shi X; Baracho GV; Lomas WE; Widmann SJ; Tyznik AJ
    STAR Protoc; 2021 Dec; 2(4):100893. PubMed ID: 34712996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of mouse brain-infiltrating leukocytes for single cell profiling of epitopes and transcriptomes.
    Guldner IH; Golomb SM; Wang Q; Wang E; Zhang S
    STAR Protoc; 2021 Jun; 2(2):100537. PubMed ID: 34036283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scGR-seq: Integrated analysis of glycan and RNA in single cells.
    Odaka H; Ozaki H; Tateno H
    STAR Protoc; 2022 Mar; 3(1):101179. PubMed ID: 35243371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol for the isolation of CD8+ tumor-infiltrating lymphocytes from human tumors and their characterization by single-cell immune profiling and multiome.
    Anadon CM; Zhang C; Wang X; Cen L; Conejo-Garcia JR; Yu X
    STAR Protoc; 2022 Sep; 3(3):101649. PubMed ID: 36065294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining single-cell sequencing and spatial transcriptome sequencing to identify exosome-related features of glioblastoma and constructing a prognostic model to identify BARD1 as a potential therapeutic target for GBM patients.
    Zhao S; Wang Q; Ni K; Zhang P; Liu Y; Xie J; Ji W; Cheng C; Zhou Q
    Front Immunol; 2023; 14():1263329. PubMed ID: 37727789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplex immunofluorescence-guided laser capture microdissection for spatial transcriptomics of metastatic melanoma tissues.
    Martinek J; Wu TC; Sun L; Lin J; Kim KI; Marches F; Robson P; George J; Palucka K
    STAR Protoc; 2022 Dec; 3(4):101698. PubMed ID: 36149794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of astrocyte subtype based on a double reporter mice approach for downstream transcription profiling.
    Aguirrebengoa M; Ohayon D
    STAR Protoc; 2021 Dec; 2(4):101009. PubMed ID: 34950888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocols for single-cell RNA-seq and spatial gene expression integration and interactive visualization.
    Sona S; Bradley M; Ting AH
    STAR Protoc; 2023 Mar; 4(1):102047. PubMed ID: 36853708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparing Highly Viable Single-Cell Suspensions from Mouse Pancreatic Islets for Single-Cell RNA Sequencing.
    Lee H; Engin F
    STAR Protoc; 2020 Dec; 1(3):100144. PubMed ID: 33377038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.