These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37393613)

  • 1. Quantifying mitochondrial redox and bilirubin content in intact primary hepatocytes of obese mice using fluorescent reporters.
    Belmas T; Liesa M; Shum M
    STAR Protoc; 2023 Sep; 4(3):102408. PubMed ID: 37393613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Live Monitoring of ROS-Induced Cytosolic Redox Changes with roGFP2-Based Sensors in Plants.
    Ugalde JM; Fecker L; Schwarzländer M; Müller-Schüssele SJ; Meyer AJ
    Methods Mol Biol; 2022; 2526():65-85. PubMed ID: 35657512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium in Drosophila Neuron Subtypes Using Redox-Sensitive Fluorophores and 3D Imaging.
    Buhlman LM; Keoseyan PP; Houlihan KL; Juba AN
    Methods Mol Biol; 2021; 2276():113-127. PubMed ID: 34060036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo imaging of H2O2 production in Drosophila.
    Barata AG; Dick TP
    Methods Enzymol; 2013; 526():61-82. PubMed ID: 23791094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time quantification of subcellular H
    Panieri E; Millia C; Santoro MM
    Free Radic Biol Med; 2017 Aug; 109():189-200. PubMed ID: 28192232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing redox-sensitive GFP fusions to detect in vivo redox changes in a genetically engineered prokaryote.
    Reuter WH; Masuch T; Ke N; Lenon M; Radzinski M; Van Loi V; Ren G; Riggs P; Antelmann H; Reichmann D; Leichert LI; Berkmen M
    Redox Biol; 2019 Sep; 26():101280. PubMed ID: 31450103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring E(GSH) and H2O2 with roGFP2-based redox probes.
    Morgan B; Sobotta MC; Dick TP
    Free Radic Biol Med; 2011 Dec; 51(11):1943-51. PubMed ID: 21964034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive In Planta Live Measurements of H
    Buratti S; Grenzi M; Tortora G; Nastasi SP; Dell'Aglio E; Bassi A; Costa A
    Methods Mol Biol; 2024; 2798():45-64. PubMed ID: 38587735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose Acutely Reduces Cytosolic and Mitochondrial H
    Deglasse JP; Roma LP; Pastor-Flores D; Gilon P; Dick TP; Jonas JC
    Antioxid Redox Signal; 2019 Jan; 30(3):297-313. PubMed ID: 29756464
    [No Abstract]   [Full Text] [Related]  

  • 10. Genetically Encoded Biosensors to Monitor Intracellular Reactive Oxygen and Nitrogen Species and Glutathione Redox Potential in Skeletal Muscle Cells.
    Fernández-Puente E; Palomero J
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient light-induced intracellular oxidation revealed by redox biosensor.
    Kolossov VL; Beaudoin JN; Hanafin WP; DiLiberto SJ; Kenis PJ; Gaskins HR
    Biochem Biophys Res Commun; 2013 Oct; 439(4):517-21. PubMed ID: 24025674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local redox environment beneath biological membranes probed by palmitoylated-roGFP.
    Hatori Y; Inouye S; Akagi R; Seyama T
    Redox Biol; 2018 Apr; 14():679-685. PubMed ID: 29179107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic in vitro assessment of responses of roGFP2-based probes to physiologically relevant oxidant species.
    Müller A; Schneider JF; Degrossoli A; Lupilova N; Dick TP; Leichert LI
    Free Radic Biol Med; 2017 May; 106():329-338. PubMed ID: 28242229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetically encoded fluorescent redox sensors.
    Lukyanov KA; Belousov VV
    Biochim Biophys Acta; 2014 Feb; 1840(2):745-56. PubMed ID: 23726987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes.
    Ebersoll S; Bogacz M; Günter LM; Dick TP; Krauth-Siegel RL
    Elife; 2020 Jan; 9():. PubMed ID: 32003744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox Imaging Using Cardiac Myocyte-Specific Transgenic Biosensor Mice.
    Swain L; Kesemeyer A; Meyer-Roxlau S; Vettel C; Zieseniss A; Güntsch A; Jatho A; Becker A; Nanadikar MS; Morgan B; Dennerlein S; Shah AM; El-Armouche A; Nikolaev VO; Katschinski DM
    Circ Res; 2016 Oct; 119(9):1004-1016. PubMed ID: 27553648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An roGFP2-Based Bacterial Bioreporter for Redox Sensing of Plant Surfaces.
    Liu TH; Yaghmour MA; Lee MH; Gradziel TM; Leveau JHJ; Bostock RM
    Phytopathology; 2020 Feb; 110(2):297-308. PubMed ID: 31483224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxide Probes.
    Roma LP; Deponte M; Riemer J; Morgan B
    Antioxid Redox Signal; 2018 Aug; 29(6):552-568. PubMed ID: 29160083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live Imaging of the Mitochondrial Glutathione Redox State in Primary Neurons using a Ratiometric Indicator.
    Katsalifis A; Casaril AM; Depp C; Bas-Orth C
    J Vis Exp; 2021 Oct; (176):. PubMed ID: 34747400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H
    Nietzel T; Elsässer M; Ruberti C; Steinbeck J; Ugalde JM; Fuchs P; Wagner S; Ostermann L; Moseler A; Lemke P; Fricker MD; Müller-Schüssele SJ; Moerschbacher BM; Costa A; Meyer AJ; Schwarzländer M
    New Phytol; 2019 Feb; 221(3):1649-1664. PubMed ID: 30347449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.