These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37393770)

  • 1. Leafhopper-inspired reversibly switchable antireflection coating with sugar apple-like structure arrays.
    Chiang KT; Lin SH; Ye YZ; Zeng BH; Cheng YL; Lee RH; Lin KA; Yang H
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):81-93. PubMed ID: 37393770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible embroidered ball-like antireflective structure arrays inspired by leafhopper wings.
    Li PC; Chen HY; Chiang KT; Yang H
    J Colloid Interface Sci; 2021 Oct; 599():119-129. PubMed ID: 33933786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversibly Erasable Broadband Omnidirectional Antireflection Coatings Inspired by Inclined Conical Structures on Blue-Tailed Forest Hawk Dragonfly Wings.
    Tseng HY; Chen YH; Chen RY; Yang H
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10883-10892. PubMed ID: 32031777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leafhopper Wing-Inspired Broadband Omnidirectional Antireflective Embroidered Ball-Like Structure Arrays Using a Nonlithography-Based Methodology.
    Lei CW; Chen RY; Yang H
    Langmuir; 2020 May; 36(19):5296-5302. PubMed ID: 32326699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Durable Broadband and Omnidirectional Ultra-antireflective Surfaces.
    Li Z; Lin J; Liu Z; Feng S; Liu Y; Wang C; Liu Y; Yang S
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40180-40188. PubMed ID: 30378430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omnidirectional / Unidirectional Antireflection-Switchable Structures Inspired by Dragonfly Wings.
    Chen RY; Lai CJ; Chen YJ; Wu MX; Yang H
    J Colloid Interface Sci; 2022 Mar; 610():246-257. PubMed ID: 34923266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Omnidirectional Antireflection Coatings Inspired by Inclined Irregular Nanostructures on Transparent Blue-Tailed Forest Hawk Dragonfly Wings.
    Chen YH; Chen HY; Lai CJ; Hsu JH; Lin KA; Yang H
    Langmuir; 2021 Aug; 37(31):9490-9503. PubMed ID: 34333977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-antireflective synthetic brochosomes.
    Yang S; Sun N; Stogin BB; Wang J; Huang Y; Wong TS
    Nat Commun; 2017 Nov; 8(1):1285. PubMed ID: 29101358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile dip-coating approach based on three silica sols to fabrication of broadband antireflective superhydrophobic coatings.
    Gao L; He J
    J Colloid Interface Sci; 2013 Jun; 400():24-30. PubMed ID: 23582903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometric design of antireflective leafhopper brochosomes.
    Wang L; Li Z; Shen S; Wong TS
    Proc Natl Acad Sci U S A; 2024 Apr; 121(14):e2312700121. PubMed ID: 38498725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow Rodlike MgF
    Bao L; Ji Z; Wang H; Chen R
    Langmuir; 2017 Jun; 33(25):6240-6247. PubMed ID: 28602095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Step Fabrication of Longtail Glasswing Butterfly-Inspired Omnidirectional Antireflective Structures.
    Lai CJ; Tsai HP; Chen JY; Wu MX; Chen YJ; Lin KY; Yang HT
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antireflective Superhydrophobic and Robust Coating Based on Chitin Nanofibers and Methylsilanized Silica for Outdoor Applications.
    Zhang L; Xu J; Hu Z; Wang P; Shang J; Zhou J; Ren L
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38690-38701. PubMed ID: 38988275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-Sided, Omnidirectional γ-AlOOH Hierarchical Nanostructures: Imparting Enhanced Antireflective Properties with Self-Cleaning Capacity for Optical Devices.
    Halan Joghee S; Uthandi KM; Singh N; Katti S; Kumar P; Kaur MP; Pullithadathil B
    Langmuir; 2021 Jun; 37(23):6953-6966. PubMed ID: 34060322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide-Angle Broadband Antireflection Coatings Prepared by Atomic Layer Deposition.
    Pfeiffer K; Ghazaryan L; Schulz U; Szeghalmi A
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21887-21894. PubMed ID: 31083898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide-angle broadband antireflection coatings based on boomerang-like alumina nanostructures in visible region.
    Omrani M; Malekmohammad M; Zabolian H
    Sci Rep; 2022 Jan; 12(1):904. PubMed ID: 35042946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cicada-Wing-Inspired Self-Cleaning Antireflection Coatings on Polymer Substrates.
    Chen YC; Huang ZS; Yang H
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25495-505. PubMed ID: 26505645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional Biomimetic Composite Coating with Antireflection, Self-Cleaning and Mechanical Stability.
    Jiao Z; Wang Z; Wang Z; Han Z
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized antireflective silicon nanostructure arrays using nanosphere lithography.
    Lee D; Bae J; Hong S; Yang H; Kim YB
    Nanotechnology; 2016 May; 27(21):215302. PubMed ID: 27087196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband and crack-free antireflection coatings by self-assembled moth eye patterns.
    Galeotti F; Trespidi F; Timò G; Pasini M
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5827-34. PubMed ID: 24670669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.