BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37393807)

  • 1. Shall we always use hydraulic models? A graph neural network metamodel for water system calibration and uncertainty assessment.
    Zanfei A; Menapace A; Brentan BM; Sitzenfrei R; Herrera M
    Water Res; 2023 Aug; 242():120264. PubMed ID: 37393807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time water quality prediction in water distribution networks using graph neural networks with sparse monitoring data.
    Li Z; Liu H; Zhang C; Fu G
    Water Res; 2024 Feb; 250():121018. PubMed ID: 38113592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choosing a Metamodel of a Simulation Model for Uncertainty Quantification.
    de Carvalho TM; van Rosmalen J; Wolff HB; Koffijberg H; Coupé VMH
    Med Decis Making; 2022 Jan; 42(1):28-42. PubMed ID: 34098793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of graph and complex network theory in water distribution networks: Mathematical foundation, application and prospects.
    Yu X; Wu Y; Meng F; Zhou X; Liu S; Huang Y; Wu X
    Water Res; 2024 Apr; 253():121238. PubMed ID: 38350191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A convenient and stable graph-based pressure estimation methodology for water distribution networks: Development and field validation.
    Zhou X; Zhang J; Guo S; Liu S; Xin K
    Water Res; 2023 Apr; 233():119747. PubMed ID: 36841165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gated graph neural networks for identifying contamination sources in water distribution systems.
    Li Z; Liu H; Zhang C; Fu G
    J Environ Manage; 2024 Feb; 351():119806. PubMed ID: 38118345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridging hydraulics and graph signal processing: A new perspective to estimate water distribution network pressures.
    Zhou X; Liu S; Xu W; Xin K; Wu Y; Meng F
    Water Res; 2022 Jun; 217():118416. PubMed ID: 35429881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-Effectiveness and Value-of-Information Analysis Using Machine Learning-Based Metamodeling: A Case of Hepatitis C Treatment.
    McCandlish JA; Ayer T; Chhatwal J
    Med Decis Making; 2023 Jan; 43(1):68-77. PubMed ID: 36113098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leak detection and localization in water distribution networks using conditional deep convolutional generative adversarial networks.
    Rajabi MM; Komeilian P; Wan X; Farmani R
    Water Res; 2023 Jun; 238():120012. PubMed ID: 37150062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of calibration in uncertainty-based referral for deep learning.
    Zhang R; Gatsonis C; Steingrimsson JA
    Stat Methods Med Res; 2023 May; 32(5):927-943. PubMed ID: 37011026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel candidate disease gene prioritization method using deep graph convolutional networks and semi-supervised learning.
    Azadifar S; Ahmadi A
    BMC Bioinformatics; 2022 Oct; 23(1):422. PubMed ID: 36241966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BayCANN: Streamlining Bayesian Calibration With Artificial Neural Network Metamodeling.
    Jalal H; Trikalinos TA; Alarid-Escudero F
    Front Physiol; 2021; 12():662314. PubMed ID: 34113262
    [No Abstract]   [Full Text] [Related]  

  • 13. Using a deep convolutional network to predict the longitudinal dispersion coefficient.
    Ghiasi B; Jodeiri A; Andik B
    J Contam Hydrol; 2021 Jun; 240():103798. PubMed ID: 33770526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial neural network metamodel for sensitivity analysis in a total hip replacement health economic model.
    Alam MF; Briggs A
    Expert Rev Pharmacoecon Outcomes Res; 2020 Dec; 20(6):629-640. PubMed ID: 31491359
    [No Abstract]   [Full Text] [Related]  

  • 15. Including geophysical data in ground water model inverse calibration.
    Dam D; Christensen S
    Ground Water; 2003; 41(2):178-89. PubMed ID: 12656284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique.
    Quosay AA; Knez D; Ziaja J
    PLoS One; 2020; 15(7):e0236726. PubMed ID: 32726370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph neural network for integrated water network partitioning and dynamic district metered areas.
    Fu M; Rong K; Huang Y; Zhang M; Zheng L; Zheng J; Falah MW; Yaseen ZM
    Sci Rep; 2022 Nov; 12(1):19466. PubMed ID: 36376376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph Laplace Regularization-based pressure sensor placement strategy for leak localization in the water distribution networks under joint hydraulic and topological feature spaces.
    Cheng M; Li J; Wang C; Ye C; Chang Z
    Water Res; 2024 Jun; 257():121666. PubMed ID: 38703543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydraulic performance benchmarking for effective management of water distribution networks: An innovative composite index-based approach.
    Zaman D; Gupta AK; Uddameri V; Tiwari MK; Ghosal PS
    J Environ Manage; 2021 Dec; 299():113603. PubMed ID: 34454199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual graph convolutional neural network for predicting chemical networks.
    Harada S; Akita H; Tsubaki M; Baba Y; Takigawa I; Yamanishi Y; Kashima H
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):94. PubMed ID: 32321421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.