These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37393825)

  • 1. Effects of terminal electron acceptors on the biodegradation of waste motor oil using Chlorella vulgaris-Rhodococcus erythropolis consortia: Kinetic and thermodynamic windows of opportunity analysis.
    Pi Y; Jia W; Chi S; Meng H; Tang Y
    J Hazard Mater; 2023 Sep; 458():131960. PubMed ID: 37393825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of different electron acceptors on petroleum hydrocarbon biotransformation to final products in activated sludge biosystems.
    Zhao L; Zhang C; Li H; Bao M; Sun P
    Bioprocess Biosyst Eng; 2019 Apr; 42(4):643-655. PubMed ID: 30637486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of different electron acceptors on the methanogenesis of hydrolyzed polyacrylamide biodegradation in anaerobic activated sludge systems.
    Zhao L; Zhang C; Bao M; Lu J
    Bioresour Technol; 2018 Jan; 247():759-768. PubMed ID: 30060411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of hydrocarbon degradation capacity and kinetic modeling of
    Abbas M; Ni L; Du C
    Int J Phytoremediation; 2024; 26(12):1914-1922. PubMed ID: 38847151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of parabens from wastewater by Chlorella vulgaris-bacteria co-cultures.
    Sousa H; Sousa CA; Vale F; Santos L; Simões M
    Sci Total Environ; 2023 Aug; 884():163746. PubMed ID: 37121314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons.
    Xaaldi Kalhor A; Movafeghi A; Mohammadi-Nassab AD; Abedi E; Bahrami A
    Mar Pollut Bull; 2017 Oct; 123(1-2):286-290. PubMed ID: 28844453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature.
    Luong TM; Ponamoreva ON; Nechaeva IA; Petrikov KV; Delegan YA; Surin AK; Linklater D; Filonov AE
    World J Microbiol Biotechnol; 2018 Jan; 34(2):20. PubMed ID: 29302805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of benzo[α]pyrene, toluene, and formaldehyde from the gas phase by a consortium of Rhodococcus erythropolis and Fusarium solani.
    Morales P; Cáceres M; Scott F; Díaz-Robles L; Aroca G; Vergara-Fernández A
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6765-6777. PubMed ID: 28685193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-seq analysis reveals the significant effects of different light conditions on oil degradation by marine Chlorella vulgaris.
    Li J; Chen Q; Bao B; Liu M; Bao M; Liu J; Mu J
    Mar Pollut Bull; 2018 Dec; 137():267-276. PubMed ID: 30503435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using microalgae for remediation of crude petroleum oil-water emulsions.
    Kuttiyathil MS; Mohamed MM; Al-Zuhair S
    Biotechnol Prog; 2021 Mar; 37(2):e3098. PubMed ID: 33169531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria.
    Xue L; Shang H; Ma P; Wang X; He X; Niu J; Wu J
    J Basic Microbiol; 2018 Apr; 58(4):358-367. PubMed ID: 29488634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium.
    Santisi S; Cappello S; Catalfamo M; Mancini G; Hassanshahian M; Genovese L; Giuliano L; Yakimov MM
    Braz J Microbiol; 2015 Jun; 46(2):377-87. PubMed ID: 26273252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp.
    Pi Y; Chen B; Bao M; Fan F; Cai Q; Ze L; Zhang B
    Bioresour Technol; 2017 May; 232():263-269. PubMed ID: 28236759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Oil biodegradation by microbial-plant associations].
    Ivanova AA; Vetrova AA; Filonov AE; Boronin AM
    Prikl Biokhim Mikrobiol; 2015; 51(2):191-7. PubMed ID: 26027354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodesulphurization of gasoline by Rhodococcus erythropolis supported on polyvinyl alcohol.
    Fatahi A; Sadeghi S
    Lett Appl Microbiol; 2017 May; 64(5):370-378. PubMed ID: 28266721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Chlorella vulgaris growth and bioremediation ability of aquarium wastewater using diazotrophs.
    Ali SM; Nasr HS; Abbas WT
    Pak J Biol Sci; 2012 Aug; 15(16):775-82. PubMed ID: 24175418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus.
    Chaudhary R; Dikshit AK; Tong YW
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20399-20406. PubMed ID: 28656576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders.
    Xia M; Fu D; Chakraborty R; Singh RP; Terry N
    Bioresour Technol; 2019 Jun; 282():456-463. PubMed ID: 30889537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biorecovery of Agricultural Soil Impacted by Waste Motor Oil with
    Martínez BCS; Benavides LM; Santoyo G; Sánchez-Yáñez JM
    Plants (Basel); 2022 May; 11(11):. PubMed ID: 35684191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyethylene Biodegradation by an Artificial Bacterial Consortium: Rhodococcus as a Competitive Plastisphere Species.
    Putcha JP; Kitagawa W
    Microbes Environ; 2024; 39(3):. PubMed ID: 39085141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.