These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 37393853)

  • 41. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives.
    Ghosh S; Basu RN
    Nanoscale; 2018 Jun; 10(24):11241-11280. PubMed ID: 29897365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
    Li D; Shi J; Li C
    Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting.
    Hayat A; Sohail M; Ali H; Taha TA; Qazi HIA; Ur Rahman N; Ajmal Z; Kalam A; Al-Sehemi AG; Wageh S; Amin MA; Palamanit A; Nawawi WI; Newair EF; Orooji Y
    Chem Rec; 2023 Feb; 23(2):e202200149. PubMed ID: 36408911
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis.
    Chen P; Tong Y; Wu C; Xie Y
    Acc Chem Res; 2018 Nov; 51(11):2857-2866. PubMed ID: 30375850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.
    Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B
    Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design Engineering, Synthesis Protocols, and Energy Applications of MOF-Derived Electrocatalysts.
    Radwan A; Jin H; He D; Mu S
    Nanomicro Lett; 2021 Jun; 13(1):132. PubMed ID: 34138365
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Challenges and Opportunities of Transition Metal Oxides as Electrocatalysts.
    Xiong W; Yin H; Wu T; Li H
    Chemistry; 2023 Jan; 29(5):e202202872. PubMed ID: 36372776
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Noble-Metal-Free Electrocatalysts for Oxygen Evolution.
    Lyu F; Wang Q; Choi SM; Yin Y
    Small; 2019 Jan; 15(1):e1804201. PubMed ID: 30456922
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction.
    Xu Y; Zhang X; Liu Y; Wang R; Yang Y; Chen J
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11302-11320. PubMed ID: 36520289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transition Metal Non-Oxides as Electrocatalysts: Advantages and Challenges.
    Das C; Sinha N; Roy P
    Small; 2022 Jul; 18(28):e2202033. PubMed ID: 35703063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alkali treatment of layered double hydroxide nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting.
    Yang H; Zhou Z; Yu H; Wen H; Yang R; Peng S; Sun M; Yu L
    J Colloid Interface Sci; 2023 Apr; 636():11-20. PubMed ID: 36621125
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries.
    Kundu A; Mallick S; Ghora S; Raj CR
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40172-40199. PubMed ID: 34424683
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Core-shell nanostructured electrocatalysts for water splitting.
    Yin X; Yang L; Gao Q
    Nanoscale; 2020 Aug; 12(30):15944-15969. PubMed ID: 32761000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultrasound-Assisted Preparation and Performance Regulation of Electrocatalytic Materials.
    Deng Q; Chen S; Wu W; Zhang S; An C; Hu N; Han X
    Chempluschem; 2024 May; 89(5):e202300688. PubMed ID: 38199955
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hierarchical NiFe Layered Double Hydroxide Hollow Microspheres with Highly-Efficient Behavior toward Oxygen Evolution Reaction.
    Zhang C; Shao M; Zhou L; Li Z; Xiao K; Wei M
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33697-33703. PubMed ID: 27960375
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Active Site Engineering in Porous Electrocatalysts.
    Chen H; Liang X; Liu Y; Ai X; Asefa T; Zou X
    Adv Mater; 2020 Nov; 32(44):e2002435. PubMed ID: 32666550
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exceptional Performance of Hierarchical Ni-Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting.
    Zhou Y; Wang Z; Pan Z; Liu L; Xi J; Luo X; Shen Y
    Adv Mater; 2019 Feb; 31(8):e1806769. PubMed ID: 30589134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facile hydrothermal synthesis of layered 1T' MoTe
    Lei Y; Xiao X; Ma T; Li W; Zhang H; Ma C
    Front Chem; 2022; 10():1005782. PubMed ID: 36238098
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pyrochlores for Advanced Oxygen Electrocatalysis.
    Gayen P; Saha S; Ramani V
    Acc Chem Res; 2022 Aug; 55(16):2191-2200. PubMed ID: 35878953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pyrite-Type Nanomaterials for Advanced Electrocatalysis.
    Gao MR; Zheng YR; Jiang J; Yu SH
    Acc Chem Res; 2017 Sep; 50(9):2194-2204. PubMed ID: 28825788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.