These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37394131)
1. Comparison of the effects of sublethal concentrations of biofoulants, copper pyrithione and zinc pyrithione on a marine mysid - A multigenerational study. Lee S; Haque MN; Lee DH; Rhee JS Comp Biochem Physiol C Toxicol Pharmacol; 2023 Sep; 271():109694. PubMed ID: 37394131 [TBL] [Abstract][Full Text] [Related]
2. The Effects of Co-Exposure to Antifoulants and Microplastics on the Survival, Oxidative Status, and Cholinergic System of a Marine Mysid. Lee S; Haque MN; Lee DH; Rhee JS Toxics; 2024 Sep; 12(9):. PubMed ID: 39330579 [TBL] [Abstract][Full Text] [Related]
3. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus. Bao VW; Lui GC; Leung KM Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222 [TBL] [Abstract][Full Text] [Related]
4. Acute and mutigenerational effects of environmental concentration of the antifouling agent dichlofluanid on the mysid model, Neomysis awatschensis. Lee S; Haque MN; Rhee JS Environ Pollut; 2022 Oct; 311():119996. PubMed ID: 35988677 [TBL] [Abstract][Full Text] [Related]
5. Hull-cleaning wastewater poses serious acute and chronic toxicity to a marine mysid-A multigenerational study. Lee S; Nam SE; Jung JH; Kim M; Rhee JS J Hazard Mater; 2024 May; 469():133959. PubMed ID: 38457977 [TBL] [Abstract][Full Text] [Related]
6. Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris). Mochida K; Ito K; Harino H; Kakuno A; Fujii K Environ Toxicol Chem; 2006 Nov; 25(11):3058-64. PubMed ID: 17089732 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of acetylcholinesterase by metabolites of copper pyrithione (CuPT) and its possible involvement in vertebral deformity of a CuPT-exposed marine teleostean fish. Mochida K; Ito K; Harino H; Tanaka H; Onduka T; Kakuno A; Fujii K Comp Biochem Physiol C Toxicol Pharmacol; 2009 May; 149(4):624-30. PubMed ID: 19211040 [TBL] [Abstract][Full Text] [Related]
8. Effects of metal pyrithione antifoulants on freshwater macrophyte Lemna gibba G3 determined by image analysis. Okamura H; Togosmaa L; Sawamoto T; Fukushi K; Nishida T; Beppu T Ecotoxicology; 2012 May; 21(4):1102-11. PubMed ID: 22350106 [TBL] [Abstract][Full Text] [Related]
9. Pyrithiones as antifoulants: environmental fate and loss of toxicity. Turley PA; Fenn RJ; Ritter JC; Callow ME Biofouling; 2005; 21(1):31-40. PubMed ID: 16019389 [TBL] [Abstract][Full Text] [Related]
10. Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater. Onduka T; Mochida K; Harino H; Ito K; Kakuno A; Fujii K Arch Environ Contam Toxicol; 2010 May; 58(4):991-7. PubMed ID: 19967345 [TBL] [Abstract][Full Text] [Related]
11. Comparative toxicity study of waterborne two booster biocides (CuPT and ZnPT) on embryonic flounder (Paralichthys olivaceus). Shin D; Choi Y; Soon ZY; Kim M; Kim DJ; Jung JH Ecotoxicol Environ Saf; 2022 Mar; 233():113337. PubMed ID: 35219958 [TBL] [Abstract][Full Text] [Related]
12. Toxicity reduction of metal pyrithiones by near ultraviolet irradiation. Okamura H; Kobayashi N; Miyanaga M; Nogami Y Environ Toxicol; 2006 Aug; 21(4):305-9. PubMed ID: 16841307 [TBL] [Abstract][Full Text] [Related]
13. Novel antifouling agent zinc pyrithione: determination, acute toxicity, and bioaccumulation in marine mussels (Mytilus galloprovincialis). Marcheselli M; Rustichelli C; Mauri M Environ Toxicol Chem; 2010 Nov; 29(11):2583-92. PubMed ID: 20853456 [TBL] [Abstract][Full Text] [Related]
14. Novel antifouling agent--zinc pyrithione: short- and long-term effects on survival and reproduction of the marine polychaete Dinophilus gyrociliatus. Marcheselli M; Conzo F; Mauri M; Simonini R Aquat Toxicol; 2010 Jun; 98(2):204-10. PubMed ID: 20211499 [TBL] [Abstract][Full Text] [Related]
15. Constant exposure to environmental concentrations of the antifouling biocide Sea-Nine retards growth and reduces acetylcholinesterase activity in a marine mysid. Do JW; Haque MN; Lim HJ; Min BH; Lee DH; Kang JH; Kim M; Jung JH; Rhee JS Aquat Toxicol; 2018 Dec; 205():165-173. PubMed ID: 30391725 [TBL] [Abstract][Full Text] [Related]
16. Exposure to sublethal concentrations of zinc pyrithione inhibits growth and survival of marine polychaete through induction of oxidative stress and DNA damage. Haque MN; Nam SE; Eom HJ; Kim SK; Rhee JS Mar Pollut Bull; 2020 Jul; 156():111276. PubMed ID: 32510415 [TBL] [Abstract][Full Text] [Related]
17. Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria. Bao VW; Leung KM; Kwok KW; Zhang AQ; Lui GC Mar Pollut Bull; 2008; 57(6-12):616-23. PubMed ID: 18495176 [TBL] [Abstract][Full Text] [Related]
18. Copper pyrithione, a booster biocide, induces abnormal muscle and notochord architecture in zebrafish embryogenesis. Almond KM; Trombetta LD Ecotoxicology; 2017 Sep; 26(7):855-867. PubMed ID: 28573481 [TBL] [Abstract][Full Text] [Related]
19. Toxicity and metabolism of copper pyrithione and its degradation product, 2,2'-dipyridyldisulfide in a marine polychaete. Mochida K; Amano H; Onduka T; Kakuno A; Fujii K Chemosphere; 2011 Jan; 82(3):390-7. PubMed ID: 20965543 [TBL] [Abstract][Full Text] [Related]
20. Effects of zinc pyrithione on biochemical parameters of the freshwater Asian clam Corbicula fluminea. Nogueira AF; Pereira JL; Antunes SC; Gonçalves FJM; Nunes B Aquat Toxicol; 2018 Nov; 204():100-106. PubMed ID: 30227300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]