These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37394418)

  • 21. The biomechanics of the human in flight.
    Yeadon MR
    Am J Sports Med; 1997; 25(4):575-80. PubMed ID: 9240994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intersegmental dynamics shape joint coordination during catching in typically developing children but not in children with developmental coordination disorder.
    Asmussen MJ; Przysucha EP; Dounskaia N
    J Neurophysiol; 2014 Apr; 111(7):1417-28. PubMed ID: 24401708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disruptions in joint control during drawing arm movements in Parkinson's disease.
    Dounskaia N; Ketcham CJ; Leis BC; Stelmach GE
    Exp Brain Res; 2005 Jul; 164(3):311-22. PubMed ID: 15891873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. General coordination of shoulder, elbow and wrist dynamics during multijoint arm movements.
    Galloway JC; Koshland GF
    Exp Brain Res; 2002 Jan; 142(2):163-80. PubMed ID: 11807572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Joint-specific disruption of control during arm movements in Parkinson's disease.
    Fradet L; Lee G; Stelmach G; Dounskaia N
    Exp Brain Res; 2009 May; 195(1):73-87. PubMed ID: 19277617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in inter-joint relationships of muscle moments and powers accompanying the acquisition of a multi-articular kicking task.
    Young RP; Marteniuk RG
    J Biomech; 1995 Jun; 28(6):701-13. PubMed ID: 7601869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directional biases reveal utilization of arm's biomechanical properties for optimization of motor behavior.
    Goble JA; Zhang Y; Shimansky Y; Sharma S; Dounskaia NV
    J Neurophysiol; 2007 Sep; 98(3):1240-52. PubMed ID: 17625062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of biomechanical constraints on horizontal arm movements.
    Dounskaia NV; Ketcham CJ; Stelmach GE
    Motor Control; 2002 Oct; 6(4):366-87. PubMed ID: 12429891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The internal model and the leading joint hypothesis: implications for control of multi-joint movements.
    Dounskaia N
    Exp Brain Res; 2005 Sep; 166(1):1-16. PubMed ID: 16132966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cortical and corticospinal output modulations during reaching movements with varying directions and magnitudes of interaction torques.
    Asmussen MJ; Bailey AZ; Nelson AJ
    Neuroscience; 2015 Dec; 311():268-83. PubMed ID: 26525892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Commonalities and differences in control of various drawing movements.
    Dounskaia N; Ketcham CJ; Stelmach GE
    Exp Brain Res; 2002 Sep; 146(1):11-25. PubMed ID: 12192573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative analysis of methods for estimating arm segment parameters and joint torques from inverse dynamics.
    Piovesan D; Pierobon A; Dizio P; Lackner JR
    J Biomech Eng; 2011 Mar; 133(3):031003. PubMed ID: 21303179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Muscle torques and joint accelerations provide more sensitive measures of poststroke movement deficits than joint angles.
    Thomas AB; Olesh EV; Adcock A; Gritsenko V
    J Neurophysiol; 2021 Aug; 126(2):591-606. PubMed ID: 34191634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immediate compensation for variations in self-generated Coriolis torques related to body dynamics and carried objects.
    Pigeon P; Dizio P; Lackner JR
    J Neurophysiol; 2013 Sep; 110(6):1370-84. PubMed ID: 23803330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of intersegmental dynamics in coordination of the forelimb joints during unperturbed and perturbed skilled locomotion.
    Zubair HN; Stout EE; Dounskaia N; Beloozerova IN
    J Neurophysiol; 2018 Oct; 120(4):1547-1557. PubMed ID: 29995599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction torque contributes to planar reaching at slow speed.
    Yamasaki H; Tagami Y; Fujisawa H; Hoshi F; Nagasaki H
    Biomed Eng Online; 2008 Oct; 7():27. PubMed ID: 18940016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-varying motor control strategy for proximal-to-distal sequential energy distribution: insights from baseball pitching.
    Naito K
    J Exp Biol; 2021 Oct; 224(20):. PubMed ID: 34495332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Are complex control signals required for human arm movement?
    Gribble PL; Ostry DJ; Sanguineti V; Laboissière R
    J Neurophysiol; 1998 Mar; 79(3):1409-24. PubMed ID: 9497421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simplified dynamics model of planar two-joint arm movements.
    Suzuki M; Yamazaki Y; Matsunami K
    J Biomech; 2000 Aug; 33(8):925-31. PubMed ID: 10828322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.