BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 37394919)

  • 21. Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells.
    Barutcu AR; Lajoie BR; McCord RP; Tye CE; Hong D; Messier TL; Browne G; van Wijnen AJ; Lian JB; Stein JL; Dekker J; Imbalzano AN; Stein GS
    Genome Biol; 2015 Sep; 16():214. PubMed ID: 26415882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amplification of WHSC1L1 regulates expression and estrogen-independent activation of ERα in SUM-44 breast cancer cells and is associated with ERα over-expression in breast cancer.
    Irish JC; Mills JN; Turner-Ivey B; Wilson RC; Guest ST; Rutkovsky A; Dombkowski A; Kappler CS; Hardiman G; Ethier SP
    Mol Oncol; 2016 Jun; 10(6):850-65. PubMed ID: 27005559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A hypermethylation strategy utilized by enhancer-bound CARM1 to promote estrogen receptor α-dependent transcriptional activation and breast carcinogenesis.
    Peng BL; Li WJ; Ding JC; He YH; Ran T; Xie BL; Wang ZR; Shen HF; Xiao RQ; Gao WW; Ye TY; Gao X; Liu W
    Theranostics; 2020; 10(8):3451-3473. PubMed ID: 32206101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PBX1 genomic pioneer function drives ERα signaling underlying progression in breast cancer.
    Magnani L; Ballantyne EB; Zhang X; Lupien M
    PLoS Genet; 2011 Nov; 7(11):e1002368. PubMed ID: 22125492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estrogen-induced chromatin decondensation and nuclear re-organization linked to regional epigenetic regulation in breast cancer.
    Rafique S; Thomas JS; Sproul D; Bickmore WA
    Genome Biol; 2015 Aug; 16(1):145. PubMed ID: 26235388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3-D chromatin conformation, accessibility, and gene expression profiling of triple-negative breast cancer.
    Llinàs-Arias P; Ensenyat-Méndez M; Orozco JIJ; Íñiguez-Muñoz S; Valdez B; Wang C; Mezger A; Choi E; Tran YZ; Yao L; Bonath F; Olsen RA; Ormestad M; Esteller M; Lupien M; Marzese DM
    BMC Genom Data; 2023 Nov; 24(1):61. PubMed ID: 37919672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition.
    Fredlund E; Staaf J; Rantala JK; Kallioniemi O; Borg A; Ringnér M
    Breast Cancer Res; 2012 Jul; 14(4):R113. PubMed ID: 22839103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Normal Breast-Derived Epithelial Cells with Luminal and Intrinsic Subtype-Enriched Gene Expression Document Interindividual Differences in Their Differentiation Cascade.
    Kumar B; Prasad M; Bhat-Nakshatri P; Anjanappa M; Kalra M; Marino N; Storniolo AM; Rao X; Liu S; Wan J; Liu Y; Nakshatri H
    Cancer Res; 2018 Sep; 78(17):5107-5123. PubMed ID: 29997232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TOX3 is expressed in mammary ER(+) epithelial cells and regulates ER target genes in luminal breast cancer.
    Seksenyan A; Kadavallore A; Walts AE; de la Torre B; Berel D; Strom SP; Aliahmad P; Funari VA; Kaye J
    BMC Cancer; 2015 Jan; 15():22. PubMed ID: 25632947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heat shock factor 1 (HSF1) cooperates with estrogen receptor α (ERα) in the regulation of estrogen action in breast cancer cells.
    Vydra N; Janus P; Kus P; Stokowy T; Mrowiec K; Toma-Jonik A; Krzywon A; Cortez AJ; Wojtas B; Gielniewski B; Jaksik R; Kimmel M; Widlak W
    Elife; 2021 Nov; 10():. PubMed ID: 34783649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer.
    Creighton CJ; Fu X; Hennessy BT; Casa AJ; Zhang Y; Gonzalez-Angulo AM; Lluch A; Gray JW; Brown PH; Hilsenbeck SG; Osborne CK; Mills GB; Lee AV; Schiff R
    Breast Cancer Res; 2010; 12(3):R40. PubMed ID: 20569503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast basal-like carcinomas.
    Ivanov SV; Panaccione A; Nonaka D; Prasad ML; Boyd KL; Brown B; Guo Y; Sewell A; Yarbrough WG
    Br J Cancer; 2013 Jul; 109(2):444-51. PubMed ID: 23799842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tumor initiating but differentiated luminal-like breast cancer cells are highly invasive in the absence of basal-like activity.
    Kim J; Villadsen R; Sørlie T; Fogh L; Grønlund SZ; Fridriksdottir AJ; Kuhn I; Rank F; Wielenga VT; Solvang H; Edwards PA; Børresen-Dale AL; Rønnov-Jessen L; Bissell MJ; Petersen OW
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6124-9. PubMed ID: 22454501
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BC200 overexpression contributes to luminal and triple negative breast cancer pathogenesis.
    Barton M; Santucci-Pereira J; Vaccaro OG; Nguyen T; Su Y; Russo J
    BMC Cancer; 2019 Oct; 19(1):994. PubMed ID: 31646972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of tumor environmental response and oncogenic pathway activation identifies distinct basal and luminal features in HER2-related breast tumor subtypes.
    Gatza ML; Kung HN; Blackwell KL; Dewhirst MW; Marks JR; Chi JT
    Breast Cancer Res; 2011 Jun; 13(3):R62. PubMed ID: 21672245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The phenotypic spectrum of basal-like breast cancers: a critical appraisal.
    Fadare O; Tavassoli FA
    Adv Anat Pathol; 2007 Sep; 14(5):358-73. PubMed ID: 17717437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Taxonomy of breast cancer based on normal cell phenotype predicts outcome.
    Santagata S; Thakkar A; Ergonul A; Wang B; Woo T; Hu R; Harrell JC; McNamara G; Schwede M; Culhane AC; Kindelberger D; Rodig S; Richardson A; Schnitt SJ; Tamimi RM; Ince TA
    J Clin Invest; 2014 Feb; 124(2):859-70. PubMed ID: 24463450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EZH2 Regulates Pancreatic Cancer Subtype Identity and Tumor Progression via Transcriptional Repression of
    Patil S; Steuber B; Kopp W; Kari V; Urbach L; Wang X; Küffer S; Bohnenberger H; Spyropoulou D; Zhang Z; Versemann L; Bösherz MS; Brunner M; Gaedcke J; Ströbel P; Zhang JS; Neesse A; Ellenrieder V; Singh SK; Johnsen SA; Hessmann E
    Cancer Res; 2020 Nov; 80(21):4620-4632. PubMed ID: 32907838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity.
    Cicchini M; Chakrabarti R; Kongara S; Price S; Nahar R; Lozy F; Zhong H; Vazquez A; Kang Y; Karantza V
    Autophagy; 2014; 10(11):2036-52. PubMed ID: 25483966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. STAT3 and GR Cooperate to Drive Gene Expression and Growth of Basal-Like Triple-Negative Breast Cancer.
    Conway ME; McDaniel JM; Graham JM; Guillen KP; Oliver PG; Parker SL; Yue P; Turkson J; Buchsbaum DJ; Welm BE; Myers RM; Varley KE
    Cancer Res; 2020 Oct; 80(20):4355-4370. PubMed ID: 32816914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.