These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37394982)

  • 21. A facile approach for self-assembled gold nanorods monolayer films and application in surface-enhanced Raman spectroscopy.
    Ma Z; Tian L; Qiang H
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6716-20. PubMed ID: 19908589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-Scale Silica Overcoating of Gold Nanorods with Tunable Shell Thicknesses.
    Wu WC; Tracy JB
    Chem Mater; 2015 Apr; 27(8):2888-2894. PubMed ID: 26146454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging.
    Qiu X; You X; Chen X; Chen H; Dhinakar A; Liu S; Guo Z; Wu J; Liu Z
    Int J Nanomedicine; 2017; 12():4349-4360. PubMed ID: 28652737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Colloidal Medium on the Shelf-Life and Stability of Gold Nanorods Prepared by Seed-Mediated Synthesis.
    Kaur P; Chudasama B
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1665-1674. PubMed ID: 29448643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic tunable Ag-coated gold nanorod arrays as reusable SERS substrates for multiplexed antibiotics detection.
    Peng X; Li D; Li Y; Xing H; Deng W
    J Mater Chem B; 2021 Jan; 9(4):1123-1130. PubMed ID: 33427845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oriented Gold Nanorod Arrays: Self-Assembly and Optoelectronic Applications.
    Wei W; Bai F; Fan H
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):11956-11966. PubMed ID: 30913343
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity.
    Zong S; Wang Z; Yang J; Cui Y
    Anal Chem; 2011 Jun; 83(11):4178-83. PubMed ID: 21513305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Off-Resonance Gold Nanobone Films at Liquid Interface for SERS Applications.
    Moldovan R; Toma V; Iacob BC; Știufiuc RI; Bodoki E
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral Characterization and Intracellular Detection of Surface-Enhanced Raman Scattering (SERS)-Encoded Plasmonic Gold Nanostars.
    Yuan H; Fales AM; Khoury CG; Liu J; Vo-Dinh T
    J Raman Spectrosc; 2013 Feb; 44(2):234-239. PubMed ID: 24839346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manipulation of collective optical activity in one-dimensional plasmonic assembly.
    Zhu Z; Liu W; Li Z; Han B; Zhou Y; Gao Y; Tang Z
    ACS Nano; 2012 Mar; 6(3):2326-32. PubMed ID: 22324310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-Scale Synthesis of Gold Nanorods through Continuous Secondary Growth.
    Kozek KA; Kozek KM; Wu WC; Mishra SR; Tracy JB
    Chem Mater; 2013 Nov; 25(22):. PubMed ID: 24415848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid controllable synthesis of branched Au superparticles: formation mechanism of toggling the growth mode and their applications in optical broadband absorption.
    Zhong S; Hang L; Wen L; Zhang T; Cao A; Zeng P; Zhang H; Liu D; Cai W; Li Y
    Nanoscale Adv; 2023 Mar; 5(6):1776-1783. PubMed ID: 36926572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection.
    Shao J; Tong L; Tang S; Guo Z; Zhang H; Li P; Wang H; Du C; Yu XF
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5391-9. PubMed ID: 25697378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering.
    Lin KQ; Yi J; Zhong JH; Hu S; Liu BJ; Liu JY; Zong C; Lei ZC; Wang X; Aizpurua J; Esteban R; Ren B
    Nat Commun; 2017 Mar; 8():14891. PubMed ID: 28348368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods.
    Gupta MK; König T; Near R; Nepal D; Drummy LF; Biswas S; Naik S; Vaia RA; El-Sayed MA; Tsukruk VV
    Small; 2013 Sep; 9(17):2979-90. PubMed ID: 23495078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic and Electrostatic Interactions Enable Uniformly Enhanced Liquid Bacterial Surface-Enhanced Raman Scattering (SERS).
    Tadesse LF; Ho CS; Chen DH; Arami H; Banaei N; Gambhir SS; Jeffrey SS; Saleh AAE; Dionne J
    Nano Lett; 2020 Oct; 20(10):7655-7661. PubMed ID: 32914987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gradient SERS Substrates with Multiple Resonances for Analyte Screening: Fabrication and SERS Applications.
    Mukherjee A; Liu Q; Wackenhut F; Dai F; Fleischer M; Adam PM; Meixner AJ; Brecht M
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broadband SERS Enhancement by DNA Origami Assembled Bimetallic Nanoantennas with Label-Free Single Protein Sensing.
    Tanwar S; Kaur V; Kaur G; Sen T
    J Phys Chem Lett; 2021 Aug; 12(33):8141-8150. PubMed ID: 34410129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of size and surface ligand of gold nanorods on liver cancer accumulation and photothermal therapy in the second near-infrared window.
    Yang H; He H; Tong Z; Xia H; Mao Z; Gao C
    J Colloid Interface Sci; 2020 Apr; 565():186-196. PubMed ID: 31972332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.