These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37395099)

  • 1. Recent advances in enhancing stereocomplexation between poly(lactide) enantiomeric chains.
    Guo M; Wu W; Wu W; Wang R; Huang L; Gao Q
    Phys Chem Chem Phys; 2023 Jul; 25(27):17737-17758. PubMed ID: 37395099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(lactic acid) stereocomplexes: A decade of progress.
    Tsuji H
    Adv Drug Deliv Rev; 2016 Dec; 107():97-135. PubMed ID: 27125192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Processing of Stereocomplex-Type Polylactide.
    Bai H; Deng S; Bai D; Zhang Q; Fu Q
    Macromol Rapid Commun; 2017 Dec; 38(23):. PubMed ID: 28898498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Stereocomplexation between Enantiomeric Comb-Shaped Cellulose-g-poly(L-lactide) Nanohybrids and Poly(D-lactide) from the Melt.
    Ma P; Jiang L; Xu P; Dong W; Chen M; Lemstra PJ
    Biomacromolecules; 2015 Nov; 16(11):3723-9. PubMed ID: 26444105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications.
    Tsuji H
    Macromol Biosci; 2005 Jul; 5(7):569-97. PubMed ID: 15997437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of stereo-complexation on crystallization behavior and barrier properties of poly-lactide.
    Li W; Cao J; Fu L; Liu F; Huang Y; He Y; Jiang L; Dan Y
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129834. PubMed ID: 38302029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress in Enhancing Poly(Lactic Acid) Stereocomplex Formation for Material Property Improvement.
    Luo F; Fortenberry A; Ren J; Qiang Z
    Front Chem; 2020; 8():688. PubMed ID: 32974273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization, rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)-poly(ε-caprolactone-
    Jing Z; Li J; Xiao W; Xu H; Hong P; Li Y
    RSC Adv; 2019 Aug; 9(45):26067-26079. PubMed ID: 35531016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Stereocomplex Polylactide Particles on the Stereocomplexation of High Molecular Weight Polylactide Blends.
    Samsuri M; Iswaldi I; Purnama P
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Polylactide (PLA) Stereocomplexation on the Microstructure of PLA/PBS Blends and the Cell Morphology of Their Microcellular Foams.
    Sun Z; Wang L; Zhou J; Fan X; Xie H; Zhang H; Zhang G; Shi X
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33076235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(L-lactide) nanocomposites containing poly(D-lactide) grafted nanohydroxyapatite with improved interfacial adhesion via stereocomplexation.
    Huang G; Du Z; Yuan Z; Gu L; Cai Q; Yang X
    J Mech Behav Biomed Mater; 2018 Feb; 78():10-19. PubMed ID: 29128694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remarkably enhanced stereocomplex crystallization of high-molar-mass enantiomeric polylactide blends by adding double-grafted copolymers.
    Yuan L; Deng S; Wang Y; Xiu H; Zhang Q; Bai H
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128919. PubMed ID: 38134994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New opportunities for sustainable bioplastic development: Tailorable polymorphic and three-phase crystallization of stereocomplex polylactide by layered double hydroxide.
    Chen Q; Auras R; Corredig M; Kirkensgaard JJK; Mamakhel A; Uysal-Unalan I
    Int J Biol Macromol; 2022 Dec; 222(Pt A):1101-1109. PubMed ID: 36174869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): improved processability and thermomechanical properties of stereocomplexable polylactide-based materials.
    Samuel C; Cayuela J; Barakat I; Müller AJ; Raquez JM; Dubois P
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11797-807. PubMed ID: 24144359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization, thermal and mechanical properties of stereocomplexed poly(lactide) with flexible PLLA/PCL multiblock copolymer.
    Jing Z; Huang X; Liu X; Liao M; Zhang Z; Li Y
    RSC Adv; 2022 Apr; 12(21):13180-13191. PubMed ID: 35520119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films.
    Tsuji H
    Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties Enhancement of High Molecular Weight Polylactide Using Stereocomplex Polylactide as a Nucleating Agent.
    Purnama P; Samsuri M; Iswaldi I
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34070263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Modification of Poly(l-lactic acid) through Stereocomplexation with Enantiomeric Poly(d-lactic acid) and Its Copolymer.
    Zhu Q; Chang K; Qi L; Li X; Gao W; Gao Q
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34072033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoted formation of stereocomplex in enantiomeric poly(lactic acid)s induced by cellulose nanofibers.
    Ren Q; Wu M; Weng Z; Zhu X; Li W; Huang P; Wang L; Zheng W; Ohshima M
    Carbohydr Polym; 2022 Jan; 276():118800. PubMed ID: 34823806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.