These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37395481)

  • 41. High predictability of direct competition between marine diatoms under different temperatures and nutrient states.
    Siegel P; Baker KG; Low-Décarie E; Geider RJ
    Ecol Evol; 2020 Jul; 10(14):7276-7290. PubMed ID: 32760528
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disentangling the Ecological Processes Shaping the Latitudinal Pattern of Phytoplankton Communities in the Pacific Ocean.
    Xu Z; Cheung S; Endo H; Xia X; Wu W; Chen B; Ho NHE; Suzuki K; Li M; Liu H
    mSystems; 2022 Feb; 7(1):e0120321. PubMed ID: 35089068
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diatom Molecular Research Comes of Age: Model Species for Studying Phytoplankton Biology and Diversity.
    Falciatore A; Jaubert M; Bouly JP; Bailleul B; Mock T
    Plant Cell; 2020 Mar; 32(3):547-572. PubMed ID: 31852772
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Parasites do not adapt to elevated temperature, as evidenced from experimental evolution of a phytoplankton-fungus system.
    Schampera C; Agha R; Manzi F; Wolinska J
    Biol Lett; 2022 Feb; 18(2):20210560. PubMed ID: 35168375
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phytoplankton adapt to changing ocean environments.
    Irwin AJ; Finkel ZV; Müller-Karger FE; Troccoli Ghinaglia L
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5762-6. PubMed ID: 25902497
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites.
    Frenken T; Velthuis M; de Senerpont Domis LN; Stephan S; Aben R; Kosten S; van Donk E; Van de Waal DB
    Glob Chang Biol; 2016 Jan; 22(1):299-309. PubMed ID: 26488235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions.
    Storch D; Menzel L; Frickenhaus S; Pörtner HO
    Glob Chang Biol; 2014 Oct; 20(10):3059-67. PubMed ID: 24890266
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Responses of Marine Diatom Skeletonema marinoi to Nutrient Deficiency: Programmed Cell Death.
    Wang H; Chen F; Mi T; Liu Q; Yu Z; Zhen Y
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31757826
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom.
    Schaum CE; Buckling A; Smirnoff N; Studholme DJ; Yvon-Durocher G
    Nat Commun; 2018 Apr; 9(1):1719. PubMed ID: 29712900
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid-warming tolerance correlates with tolerance to slow warming but not growth at non-optimal temperatures in zebrafish.
    Åsheim ER; Andreassen AH; Morgan R; Jutfelt F
    J Exp Biol; 2020 Dec; 223(Pt 23):. PubMed ID: 33071218
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physiological response of 10 phytoplankton species exposed to macondo oil and the dispersant, Corexit.
    Bretherton L; Williams A; Genzer J; Hillhouse J; Kamalanathan M; Finkel ZV; Quigg A
    J Phycol; 2018 Jun; 54(3):317-328. PubMed ID: 29464721
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure.
    Dai X; Zhang J; Zeng X; Huang J; Lin J; Lu Y; Liang S; Ye M; Xiao M; Zhao J; Overmans S; Xia J; Jin P
    Mar Pollut Bull; 2022 Oct; 183():114056. PubMed ID: 36058179
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species.
    MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cenozoic planktonic marine diatom diversity and correlation to climate change.
    Lazarus D; Barron J; Renaudie J; Diver P; Türke A
    PLoS One; 2014; 9(1):e84857. PubMed ID: 24465441
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals.
    Pörtner HO
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Aug; 132(4):739-61. PubMed ID: 12095860
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using physiology to predict the responses of ants to climatic warming.
    Diamond SE; Penick CA; Pelini SL; Ellison AM; Gotelli NJ; Sanders NJ; Dunn RR
    Integr Comp Biol; 2013 Dec; 53(6):965-74. PubMed ID: 23892370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.
    Somero GN
    J Exp Biol; 2010 Mar; 213(6):912-20. PubMed ID: 20190116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Do marine phytoplankton follow Bergmann's rule sensu lato?
    Sommer U; Peter KH; Genitsaris S; Moustaka-Gouni M
    Biol Rev Camb Philos Soc; 2017 May; 92(2):1011-1026. PubMed ID: 27028628
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental evolution of phytoplankton fatty acid thermal reaction norms.
    O'Donnell DR; Du ZY; Litchman E
    Evol Appl; 2019 Jun; 12(6):1201-1211. PubMed ID: 31768190
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biological responses of the marine diatom Chaetoceros socialis to changing environmental conditions: A laboratory experiment.
    Li X; Roevros N; Dehairs F; Chou L
    PLoS One; 2017; 12(11):e0188615. PubMed ID: 29190826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.