These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37395639)

  • 1. Cable-Car Electrocatalysis to Drive Fully Decoupled Water Splitting.
    Long Y; Yang C; Wu Y; Deng B; Li Z; Hussain N; Wang K; Wang R; He X; Du P; Guo Z; Lang J; Huang K; Wu H
    Adv Sci (Weinh); 2023 Sep; 10(26):e2301872. PubMed ID: 37395639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Design Strategy of Catalysts for Water Electrolysis.
    Zhou B; Gao R; Zou JJ; Yang H
    Small; 2022 Jul; 18(27):e2202336. PubMed ID: 35665595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Decoupled Electrolytic Water Splitting in Acid through Pseudocapacitive TiO
    Iesalnieks M; Vanags M; Alsiņa LL; Eglītis R; Grīnberga L; Sherrell PC; Šutka A
    Adv Sci (Weinh); 2024 May; ():e2401261. PubMed ID: 38742588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenazine-based Compound Realizing Separate Hydrogen and Oxygen Production in Electrolytic Water Splitting.
    Wu K; Li H; Liang S; Ma Y; Yang J
    Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202303563. PubMed ID: 36994849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting.
    Wang P; Zheng J; Xu X; Zhang YQ; Shi QF; Wan Y; Ramakrishna S; Zhang J; Zhu L; Yokoshima T; Yamauchi Y; Long YZ
    Adv Mater; 2024 Jun; ():e2404806. PubMed ID: 38857437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects.
    Yu ZY; Duan Y; Feng XY; Yu X; Gao MR; Yu SH
    Adv Mater; 2021 Aug; 33(31):e2007100. PubMed ID: 34117808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robust Nonprecious CuFe Composite as a Highly Efficient Bifunctional Catalyst for Overall Electrochemical Water Splitting.
    Inamdar AI; Chavan HS; Hou B; Lee CH; Lee SU; Cha S; Kim H; Im H
    Small; 2020 Jan; 16(2):e1905884. PubMed ID: 31762207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar-Powered AEM Electrolyzer via PGM-Free (Oxy)hydroxide Anode with Solar to Hydrogen Conversion Efficiency of 12.44.
    Ha JS; Park Y; Jeong JY; Lee SH; Lee SJ; Kim IT; Park SH; Jin H; Kim SM; Choi S; Kim C; Choi SM; Kang BK; Lee HM; Park YS
    Adv Sci (Weinh); 2024 Jul; 11(25):e2401782. PubMed ID: 38654698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3 D Porous Nickel-Cobalt Nitrides Supported on Nickel Foam as Efficient Electrocatalysts for Overall Water Splitting.
    Wang Y; Zhang B; Pan W; Ma H; Zhang J
    ChemSusChem; 2017 Nov; 10(21):4170-4177. PubMed ID: 28857449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production by traditional and novel alkaline water electrolysis on nickel or iron based electrocatalysts.
    Zhang R; Xie A; Cheng L; Bai Z; Tang Y; Wan P
    Chem Commun (Camb); 2023 Jun; 59(53):8205-8221. PubMed ID: 37293866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical and chemical cycle for high-efficiency decoupled water splitting in a near-neutral electrolyte.
    Slobodkin I; Davydova E; Sananis M; Breytus A; Rothschild A
    Nat Mater; 2024 Mar; 23(3):398-405. PubMed ID: 38195864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vacancy and doping engineering of Ni-based charge-buffer electrode for highly-efficient membrane-free and decoupled hydrogen/oxygen evolution.
    Nie Z; Zhang L; Du Z; Hu J; Huang X; Zhou C; Wågberg T; Hu G
    J Colloid Interface Sci; 2023 Jul; 642():714-723. PubMed ID: 37037077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoupled Redox Catalytic Hydrogen Production with a Robust Electrolyte-Borne Electron and Proton Carrier.
    Zhang F; Zhang H; Salla M; Qin N; Gao M; Ji Y; Huang S; Wu S; Zhang R; Lu Z; Wang Q
    J Am Chem Soc; 2021 Jan; 143(1):223-231. PubMed ID: 33332111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-Hydrophilic Leaflike Sn
    Riyajuddin S; Pahuja M; Sachdeva PK; Azmi K; Kumar S; Afshan M; Ali F; Sultana J; Maruyama T; Bera C; Ghosh K
    ACS Nano; 2022 Mar; 16(3):4861-4875. PubMed ID: 35188366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting.
    Gao X; Chen Y; Wang Y; Zhao L; Zhao X; Du J; Wu H; Chen A
    Nanomicro Lett; 2024 Jul; 16(1):237. PubMed ID: 38967856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoupled Water Electrolysis Driven by 1 cm
    Lv F; Qin Z; Wu J; Pan L; Liu L; Chen Y; Zhao Y
    ChemSusChem; 2023 Jan; 16(1):e202201689. PubMed ID: 36279197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Membrane-Free Decoupled Water Electrolyzer Operating at Simulated Fluctuating Renewables with Tri-Functional NiCo-P Electrode.
    Liang S; Ma Y; Luo H; Wu K; Chen J; Yang J
    Chemistry; 2023 Oct; 29(55):e202302160. PubMed ID: 37434274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Metal-Free Electrode: From Biomass-Derived Carbon to Hydrogen.
    Ding Y; Greiner M; Schlögl R; Heumann S
    ChemSusChem; 2020 Aug; 13(16):4064-4068. PubMed ID: 32428374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.