These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 37396535)

  • 1. Parkinson's disease: From genetics to molecular dysfunction and targeted therapeutic approaches.
    Huang Y; Wei J; Cooper A; Morris MJ
    Genes Dis; 2023 May; 10(3):786-798. PubMed ID: 37396535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Etiology and pathogenesis of Parkinson's disease: from mitochondrial dysfunctions to familial Parkinson's disease].
    Hattori N
    Rinsho Shinkeigaku; 2004; 44(4-5):241-62. PubMed ID: 15287506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes.
    George G; Valiya Parambath S; Lokappa SB; Varkey J
    Gene; 2019 May; 697():67-77. PubMed ID: 30776463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Dysfunction in Parkinson's Disease: New Mechanistic Insights and Therapeutic Perspectives.
    Park JS; Davis RL; Sue CM
    Curr Neurol Neurosci Rep; 2018 Apr; 18(5):21. PubMed ID: 29616350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current insights into pathogenesis of Parkinson's disease: Approach to mevalonate pathway and protective role of statins.
    Saeedi Saravi SS; Saeedi Saravi SS; Khoshbin K; Dehpour AR
    Biomed Pharmacother; 2017 Jun; 90():724-730. PubMed ID: 28419968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic review of molecular approaches that link mitochondrial dysfunction and neuroinflammation in Parkinson's disease.
    Mani S; Sevanan M; Krishnamoorthy A; Sekar S
    Neurol Sci; 2021 Nov; 42(11):4459-4469. PubMed ID: 34480241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vesicular Dysfunction and the Pathogenesis of Parkinson's Disease: Clues From Genetic Studies.
    Ebanks K; Lewis PA; Bandopadhyay R
    Front Neurosci; 2019; 13():1381. PubMed ID: 31969802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies.
    Moradi Vastegani S; Nasrolahi A; Ghaderi S; Belali R; Rashno M; Farzaneh M; Khoshnam SE
    Neurochem Res; 2023 Aug; 48(8):2285-2308. PubMed ID: 36943668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current perspective of mitochondrial biology in Parkinson's disease.
    Ammal Kaidery N; Thomas B
    Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common Mechanisms Underlying α-Synuclein-Induced Mitochondrial Dysfunction in Parkinson's Disease.
    Sohrabi T; Mirzaei-Behbahani B; Zadali R; Pirhaghi M; Morozova-Roche LA; Meratan AA
    J Mol Biol; 2023 Jun; 435(12):167992. PubMed ID: 36736886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular events underlying Parkinson's disease - an interwoven tapestry.
    Lim KL; Zhang CW
    Front Neurol; 2013; 4():33. PubMed ID: 23580245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Synaptic Dysfunction to Neuroprotective Strategies in Genetic Parkinson's Disease: Lessons From LRRK2.
    Mancini A; Mazzocchetti P; Sciaccaluga M; Megaro A; Bellingacci L; Beccano-Kelly DA; Di Filippo M; Tozzi A; Calabresi P
    Front Cell Neurosci; 2020; 14():158. PubMed ID: 32848606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parkinson's Disease: A Current Perspectives on Parkinson's Disease and Key Bioactive Natural Compounds as Future Potential Drug Candidates.
    Ali N; Syeda A; Topgyal T; Gaur N; Islam A
    Curr Drug Targets; 2022; 23(1):2-20. PubMed ID: 34165406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders.
    Ramanan VK; Saykin AJ
    Am J Neurodegener Dis; 2013 Sep; 2(3):145-75. PubMed ID: 24093081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network Pharmacology and Absolute Bacterial Quantification-Combined Approach to Explore the Mechanism of Tianqi Pingchan Granule Against 6-OHDA-Induced Parkinson's Disease in Rats.
    Liu Z; Zhao J; Yang S; Zhang Y; Song L; Wu N; Liu Z
    Front Nutr; 2022; 9():836500. PubMed ID: 35600818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. α-Arbutin Protects Against Parkinson's Disease-Associated Mitochondrial Dysfunction In Vitro and In Vivo.
    Ding Y; Kong D; Zhou T; Yang ND; Xin C; Xu J; Wang Q; Zhang H; Wu Q; Lu X; Lim K; Ma B; Zhang C; Li L; Huang W
    Neuromolecular Med; 2020 Mar; 22(1):56-67. PubMed ID: 31401719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitin phosphorylation in Parkinson's disease: Implications for pathogenesis and treatment.
    Chin LS; Li L
    Transl Neurodegener; 2016; 5():1. PubMed ID: 26740872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila models of Parkinson's disease: discovering relevant pathways and novel therapeutic strategies.
    Muñoz-Soriano V; Paricio N
    Parkinsons Dis; 2011 Mar; 2011():520640. PubMed ID: 21512585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.