BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37396957)

  • 1. Microbiota-associated immunotherapy resistance caused by deficient PD-L2 - RGMb signaling.
    Fidelle M; Lebhar I; Zitvogel L; Kroemer G
    Oncoimmunology; 2023; 12(1):2224679. PubMed ID: 37396957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting PD-L2-RGMb overcomes microbiome-related immunotherapy resistance.
    Park JS; Gazzaniga FS; Wu M; Luthens AK; Gillis J; Zheng W; LaFleur MW; Johnson SB; Morad G; Park EM; Zhou Y; Watowich SS; Wargo JA; Freeman GJ; Kasper DL; Sharpe AH
    Nature; 2023 May; 617(7960):377-385. PubMed ID: 37138075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance.
    Xiao Y; Yu S; Zhu B; Bedoret D; Bu X; Francisco LM; Hua P; Duke-Cohan JS; Umetsu DT; Sharpe AH; DeKruyff RH; Freeman GJ
    J Exp Med; 2014 May; 211(5):943-59. PubMed ID: 24752301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of Gut Microbiota: A Novel Paradigm of Enhancing the Efficacy of Programmed Death-1 and Programmed Death Ligand-1 Blockade Therapy.
    Wang Y; Ma R; Liu F; Lee SA; Zhang L
    Front Immunol; 2018; 9():374. PubMed ID: 29556232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade and the emerging role of gut microbiome.
    Zou R; Wang Y; Ye F; Zhang X; Wang M; Cui S
    Clin Transl Oncol; 2021 Nov; 23(11):2237-2252. PubMed ID: 34002348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PD-L1 and PD-L2 expression correlated genes in non-small-cell lung cancer.
    Larsen TV; Hussmann D; Nielsen AL
    Cancer Commun (Lond); 2019 Jun; 39(1):30. PubMed ID: 31159869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PD-1/PD-L1 blockade: Prospectives for immunotherapy in cancer and autoimmunity.
    Hosseinzadeh R; Feizisani F; Shomali N; Abdelbasset WK; Hemmatzadeh M; Gholizadeh Navashenaq J; Jadidi-Niaragh F; Bokov DO; Janebifam M; Mohammadi H
    IUBMB Life; 2021 Nov; 73(11):1293-1306. PubMed ID: 34538007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of microbiota on PD-1/PD-L1 inhibitor therapy outcomes: A focus on solid tumors.
    Najafi S; Majidpoor J; Mortezaee K
    Life Sci; 2022 Dec; 310():121138. PubMed ID: 36309224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G.
    Carosella ED; Ploussard G; LeMaoult J; Desgrandchamps F
    Eur Urol; 2015 Aug; 68(2):267-79. PubMed ID: 25824720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RGMb impacts partial epithelial-mesenchymal transition and BMP2-Induced ID mRNA expression independent of PD-L2 in nonsmall cell lung cancer cells.
    Dorset SR; Daugaard TF; Larsen TV; Nielsen AL
    Cell Biol Int; 2023 Nov; 47(11):1799-1812. PubMed ID: 37434531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The recent advances of PD-1 and PD-L1 checkpoint signaling inhibition for breast cancer immunotherapy.
    Setordzi P; Chang X; Liu Z; Wu Y; Zuo D
    Eur J Pharmacol; 2021 Mar; 895():173867. PubMed ID: 33460617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gut Microbiota Modulates the Efficiency of Programmed Cell Death Protein 1 Cancer Immunotherapies.
    Samei A; Khedri M
    Iran J Allergy Asthma Immunol; 2022 Feb; 21(1):1-11. PubMed ID: 35524371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer.
    Yearley JH; Gibson C; Yu N; Moon C; Murphy E; Juco J; Lunceford J; Cheng J; Chow LQM; Seiwert TY; Handa M; Tomassini JE; McClanahan T
    Clin Cancer Res; 2017 Jun; 23(12):3158-3167. PubMed ID: 28619999
    [No Abstract]   [Full Text] [Related]  

  • 14. B7-DC (PD-L2) costimulation of CD4
    Nie X; Chen W; Zhu Y; Huang B; Yu W; Wu Z; Guo S; Zhu Y; Luo L; Wang S; Chen L
    Cell Mol Immunol; 2018 Oct; 15(10):888-897. PubMed ID: 28479601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in the clinical development of immune checkpoint blockade therapy.
    Ghahremanloo A; Soltani A; Modaresi SMS; Hashemy SI
    Cell Oncol (Dordr); 2019 Oct; 42(5):609-626. PubMed ID: 31201647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade.
    Pang K; Shi ZD; Wei LY; Dong Y; Ma YY; Wang W; Wang GY; Cao MY; Dong JJ; Chen YA; Zhang P; Hao L; Xu H; Pan D; Chen ZS; Han CH
    Drug Resist Updat; 2023 Jan; 66():100907. PubMed ID: 36527888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy.
    Xiao Y; Zhu T; Zeng Q; Tan Q; Jiang G; Huang X
    Acta Biomater; 2023 Feb; 157():451-466. PubMed ID: 36442821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of intestinal microbiota in response to cancer immunotherapy.
    Cong J; Zhang X
    Eur J Clin Microbiol Infect Dis; 2018 Dec; 37(12):2235-2240. PubMed ID: 30209679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmed cell death-1/programmed cell death ligand-1 checkpoint inhibitors: differences in mechanism of action.
    Zhang N; Tu J; Wang X; Chu Q
    Immunotherapy; 2019 Apr; 11(5):429-441. PubMed ID: 30698054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunopathogenesis of Immune Checkpoint Inhibitor-Related Adverse Events: Roles of the Intestinal Microbiome and Th17 Cells.
    Anderson R; Theron AJ; Rapoport BL
    Front Immunol; 2019; 10():2254. PubMed ID: 31616428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.